求e2x1tanx的不定積分

2021-05-28 18:09:01 字數 1284 閱讀 2248

1樓:匿名使用者

如圖所示,這原函式不初等。

如果有個平方的話,很容易算出來。

求(e^2x)*(tanx+1)^2的不定積分

2樓:匿名使用者

^^∫e^(2x)*(tanx+1)^2 dx=∫回e^答(2x)*[(secx)^2+2tanx] dx=∫e^(2x)*(secx)^2dx + 2∫(e^2x).tanx dx

=∫e^(2x)dtanx + 2∫(e^2x).tanx dx=e^(2x).tanx -2∫e^(2x)tanx dx +2∫(e^2x).tanx dx

=e^(2x).tanx + c

求∫(e^2x)(tanx+1)^2的不定積分

3樓:匿名使用者

∫e^2xsecx^2dx+∫2e^2xtanxdx=∫e^2xdtanx+∫tanxde^2x=e^2x tanx-∫tanxde^2x+∫tanxde^2x+c=e^2x tanx +c

求1/1+tanx的不定積分

4樓:特特拉姆咯哦

∫復1/tanx dx

=∫cosx/sinx dx

=∫1/sinx dsinx

=ln|sinx|+c

5樓:匿名使用者

你題目bai少了一個括號

dui=∫1/(

zhi1+tanx)dx

=∫cosx/(sinx+cosx)dx

要求i,設

j=∫sinx/(sinx+cosx)dxi+j=x+c1任意dao常數版

i-j=∫(cosx-sinx)/(sinx+cosx)dx=∫1/(sinx+cosx)d(sinx+cosx)=ln(sinx+cosx)+c2任意常

數所以權i=x/2+1/2*ln(sinx+cosx)+c

怎麼求(e^2x)*(tanx+1)^2的不定積分?

6樓:匿名使用者

^^^∫e^zhi(2x)*(tanx+1)^dao2 dx=∫專e^屬(2x)*[(secx)^2+2tanx] dx=∫e^(2x)*(secx)^2dx + 2∫(e^2x).tanx dx

=∫e^(2x)dtanx + 2∫(e^2x).tanx dx=e^(2x).tanx -2∫e^(2x)tanx dx +2∫(e^2x).tanx dx

=e^(2x).tanx + c

(1 tanx)的不定積分怎麼求

令1 tanx u x arctan u 1 dx du 1 u 1 2 原式 du u u 2 2u 2 1 2 1 u u 2 u 2 2u 2 du 1 2 ln u 1 2 u 2 du u 2 2 2 u 2 2 令u 2 t 1 2 ln u 1 2 tdt t 2 2t 2 1 2 l...

1 x 2 的不定積分是多少,1 1 x 2 的不定積分是多少

結果是 1 2 arcsinx x 1 x c x sin dx cos d 1 x dx 1 sin cos d cos d 1 cos2 2 d 2 sin2 4 c arcsinx 2 sin cos 2 c arcsinx 2 x 1 x 2 c 1 2 arcsinx x 1 x c拓展資...

求不定積分dx 9x 2 ,求不定積分 dx 9x 2 1

dx 9x 1 dx 3x 1 令3x tan 3 dx sec d 原式 1 3 sec d tan 1 1 3 sec sec d 1 3 sec d 1 3 ln sec tan c 1 3 ln 3x 9x 1 c 筆記 tan 3x,則sin 3x 3x 1 3x 9x 1 而cos 1 ...