二重積分,如圖。的範圍0到2是怎麼來的

2021-03-19 18:20:08 字數 1874 閱讀 4008

1樓:萍蹤俠影

直角座標轉極座標,根據積分割槽域判定出來的

2樓:公可欣篤書

畫圖很重要,y的取值是從下到上,從左到右

高數問題,二重積分如圖,d2的積分割槽域為什麼是0到派不是2派?求大神。。

3樓:匿名使用者

二重積分如圖,d2的積分割槽域為什麼是0到派不是2派?求大神。。

你寫的對的。θ是0到2π。

d1的積分割槽域為小圓域,θ是0到2π

d2的積分割槽域為圓環域,θ是0到2π

4樓:love燕塵

因為是偶函式,所以可以0到π,然後前面×2跟你的結果一樣

5樓:雨中

明明都是0到2pi,我用0到2pi計算的結果是一樣的。

利用極座標計算二重積分中,θ的範圍如何確定

6樓:桑葚味的小桑葚

確定θ的範圍的方法:看這個區域所在的象限範圍,解兩曲線的交點座標(x,y)後,角度θ=arctan(y/x),就可得到θ的範圍。極座標θ的變化都是從原點位置開始掃起的。

注意角度必須是弧度制。

一般分3種情況:

1、原點(極點)在積分割槽域的內部,角度範圍從0到2π;

2、原點(極點)在積分割槽域的邊界,角度範圍從區域的邊界,按逆時針方向掃過去,到另一條止;

3、原點(極點)在積分割槽域之外,角度範圍從區域的靠極軸的邊界,按逆時針方向掃過去,到另一條止。

7樓:是你找到了我

1、原點(極點)在積分割槽域的內部

,θ的範圍從0到2π;

2、原點(極點)在積分割槽域的邊界,θ的範圍從區域的邊界,按逆時針方向掃過去;

3、原點(極點)在積分割槽域之外,θ的範圍從區域的靠極軸的邊界,按逆時針方向掃過去。

有許多二重積分僅僅依靠直角座標下化為累次積分的方法難以達到簡化和求解的目的。當積分割槽域為圓域,環域,扇域等,或被積函式為

等形式時,採用極座標會更方便。

8樓:匿名使用者

極座標r的範圍,可以畫一個從原點指向出來的箭頭,先穿越的曲線就是下限,後穿越的曲線就是上線。

角度θ的範圍就是看這個區域所在的象限範圍,解兩曲線的交點座標(x,y)後,角度θ=arctan(y/x),如圖中,角度就是由0變化到π/2

二重積分用極座標形式θ怎麼確定範圍,根據什麼,是d還是根據被積分的部分啊,極座標完全不太懂。 10

9樓:不是苦瓜是什麼

極座標r的範圍,可以畫一個從原點指向出來的箭頭,先穿越的曲線就是下限,後穿越的曲線就是上線。

角度θ的範圍就是看這個區域所在的象限範圍,解兩曲線的交點座標(x,y)後,角度θ=arctan(y/x),如圖中,角度就是由0變化到π/2。

1、原點(極點)在積分割槽域的內部,θ的範圍從0到2π;

2、原點(極點)在積分割槽域的邊界,θ的範圍從區域的邊界,按逆時針方向掃過去;

3、原點(極點)在積分割槽域之外,θ的範圍從區域的靠極軸的邊界,按逆時針方向掃過去。

10樓:后街老訞

沒有題不太好回答,θ的取值範圍一般是根據草圖確定的,直接通過直角座標系就可以得到,比如說被積區域是圓心在原點處的整個圓,那麼就取2派,若只取上半個圓就取0到派,等等,若是半徑為1 圓心在(0,1)處的整個圓,就取0到派,。這樣說就懂了吧。先理解好被積函式是1的時候,極座標是怎麼計算面積(被積函式是1)就懂了

11樓:木沉

極座標只是座標變換,雖然引數域發生了改變,但是被表示的點是不會變化的。

所以theta的範圍應該根據被積分的區域來定。

計算二重積分,二重積分怎麼計算?

把積分割槽域分為三個x型區域,剩下的就是簡單的定積分的計算了,你把公式代進去算就行了,望採納。根據對稱性可知,積分項中的3x 與2x積分結果為零,所以積分項可以簡化為 x y 2y x y 1 1 再結合右圖分割槽域積分。二重積分怎麼計算?化為二次積分。x y dxdy 0 1 dx 1 2 x y...

高數二重積分問題如圖這個二重積分的影象怎麼畫出來的求具體步驟

6.作變換x rcos y rsin 的逆變換,rdrd dxdy,積分割槽域如圖所示,4表示直線y x在第一象限的部分,r sec 即x 1,所以是0 x 1,0 y x,所以原式 0,1 dx 0,x f x 2 y 2 dy.高數問題如圖所示,求條件極值解方程組時該怎麼求呢?求具體步驟!有沒有...

關於二重積分體積的問題,關於二重積分求體積的一類問題,像圖中這種題目要怎麼解?圖不會畫,也想不明白為什麼可以拆分成4部分,

1.這裡是面積不是體積 2.原因是積分的是xy 10所以xy 0 即x軸下方的面積在這裡是負的 所以正的面積 負的面積 正的面積 很正常如果積的是xy 2 那麼的確兩部分都是正的,加起來會大於任意一部分 關於二重積分求體積的一類問題,像圖中這種題目要怎麼解?圖不會畫,也想不明白為什麼可以拆分成4部分...