1樓:匿名使用者
絕對收斂,因為此級數的絕對值是1/n^2020,根據p級數可知它是收斂的,所以它是絕對收斂
數學分析和高等數學的關係
2樓:宛丘山人
一般來抄說,數學專業或理科學bai數學分析,工科學高等數學du,經濟類學微積分。所以zhi數分學好了,dao考高等數學的題一般不會有問題。但是也應注意,二者側重不同。
一般來說,數分偏重於證明,理論推導。而高數側重計算和應用。猛一下會不適應,考慮問題容易往難處想,反而浪費時間。
祝你考出好成績!
3樓:匿名使用者
數學bai分析,又稱高階微積分,分析學中du最古老、最基zhi本的分支dao。一般指以微積分學和無窮級數專一般理屬論為主要內容,幷包括它們的理論基礎(實數、函式和極限的基本理論)的一個較為完整的數學學科。它也是大學數學專業的一門基礎課程。
數學中的分析分支是專門研究實數與複數及其函式的數學分支。它的發展由微積分開始,並擴充套件到函式的連續性、可微分及可積分等各種特性。這些特性,有助我們應用在對物理世界的研究,研究及發現自然界的規律。
高等數學的內容包括: 函式與極限,一元函式微積分,向量代數與空間解析幾何,多元函式微積分,級數,常微分方程等。
兩者雖然內容有重合,但是也有很多不同之處。
1.從知識的廣度來說,高等數學要比數學分析內容更多,廣度更大。
2.但是,對於微積分部分來說,數學分析的深度要遠遠高於高等數學。
3. 數學分析更偏重於推導過程,而高等數學更偏重於結果的使用。
數學分析和高等數學有什麼區別?
4樓:e滾滾滾
數學分析注重原理分析,高等數學注重應用實際
1、數學分析概念多,證明多,是學習研究複雜函式的方法,高等數學主要的目的是解決工程上遇到的一些問題。
2、高等數學側重於應用 而數學分析更側重於理論的推導 。
3、數學分析每一個定理都有嚴格的證明,所有的定理最後都歸結與6個等價的原理;高等數學講究應用,很多定理是直接給出,或者給出一段簡單的描述,書本里關於應用的內容很多。
4、數學分析更偏重於推導過程,而高等數學更偏重於結果的使用。
5、數學分析作為數學系本科生的基礎課是整個分析學的基礎,數學分析是檢驗一個人對數學是否感興趣的標杆。
不是數學專業的建議還是學習高等數學,畢竟都是側重於應用數學知識,而不是**原理。
高等數學同濟版是大多數大學的高數教材,可以參考一下。
5樓:塔駡德
高等數學是對大學數學的一個總稱。
高等數學有著很多分支其中有數學分析,高等代數,微分方程等等。非數學類專業所學的課程,是數學中的基礎,內容全面,覆蓋面廣,他容納了數學專業所學的《數學分析》《高等代數》《空間解析幾何》,但相對簡單,重在做題,對定理和公式的由來不做要求。在工科中本分這麼細,統稱高等數學。
數學分析是數學類專業的課程,數學分析概念多,證明多。相對抽象,難度較大,重在證明定理和公式的由來。
拓展資料:
從內容上說高等數學包含:極限理論(不過不含基礎性的證明),一元微分和積分,弧微分,多元微分和積分,初等常微分方程,級數,空間解析幾何,向量代數等。
數學分析:
(1)從三個角度,戴德金分割,區間套,序列闡述了有理數是如何向實數擴張的)極限理論,(包含基礎性的證明,比如柯西收斂定理的證明),一元微分和積分,多元微分和積分,級數等。
(2)從形式上看,數學分析每一個定理都有嚴格的證明,所有的定理最後都歸結與6個等價的原理,很多書本都是選擇其中一個當作公理;高等數學講究應用,很多定理是直接給出,或者給出一段簡單的描述,書本里關於應用的內容很多,比如初等的常微分方程就是應用的表現。
(3)從目的上說,數學分析主要是數學系以及其他極少數系(比如資訊方面的學生)的不本科生學習,主要目的是養成良好的證明習慣,為以後數學工作打好基礎。
6樓:娉婷嫋嫋
高等數學包括數學分析。
區別:
1、內容上
從內容上說高等數學包含:極限理論(不過不含基礎性的證明),一元微分和積分,弧微分,多元微分和積分,初等常微分方程,級數,空間解析幾何,向量代數等。
數學分析包含:實數理論,(從三個角度,戴德金分割,區間套,序列闡述了有理數是如何向實數擴張的)極限理論,(包含基礎性的證明,比如柯西收斂定理的證明),一元微分和積分,多元微分和積分,級數等
2、形式上
從形式上看,數學分析每一個定理都有嚴格的證明,所有的定理最後都歸結與6個等價的原理,很多書本都是選擇其中一個當作公理;高等數學講究應用,很多定理是直接給出,或者給出一段簡單的描述,書本里關於應用的內容很多,比如初等的常微分方程就是應用的表現。
3、目的
從目的上說,數學分析主要是數學系以及其他極少數系(比如資訊方面的學生)的本科生學習,主要目的是養成良好的證明習慣,為以後數學工作打好基礎;高等數學主要是面向工科的學生以及物理經濟等專業的學生的。
拓展資料:
高等數學指相對於初等數學而言,數學的物件及方法較為繁雜的一部分。
廣義地說,初等數學之外的數學都是高等數學,也有將中學較深入的代數、幾何以及簡單的集合論初步、邏輯初步稱為中等數學的,將其作為中小學階段的初等數學與大學階段的高等數學的過渡。
通常認為,高等數學是由微積分學,較深入的代數學、幾何學以及它們之間的交叉內容所形成的一門基礎學科。主要內容包括:極限、微積分、空間解析幾何與線性代數、級數、常微分方程。
是工科、理科研究生考試的基礎科目。
又稱高階微積分,分析學中最古老、最基本的分支。一般指以微積分學和無窮級數一般理論為主要內容,幷包括它們的理論基礎(實數、函式和極限的基本理論)的一個較為完整的數學學科。它也是大學數學專業的一門基礎課程。
數學中的分析分支是專門研究實數與複數及其函式的數學分支。它的發展由微積分開始,並擴充套件到函式的連續性、可微分及可積分等各種特性。這些特性,有助我們應用在對物理世界的研究,研究及發現自然界的規律。
7樓:1234小妖精
數學分析和高等數學的主要區別為:數學分析注重原理分析,高等數學注重應用實際。從難度上來講,數學分析更難,比高等數學學得更深更細,數學分析對於數學系的學生是要連續學習三個學期的,作為後面專業學習的基礎課程。
1數學分析和高等數學的區別
1、數學分析概念多,證明多,是學習研究複雜函式的方法,高等數學主要的目的是解決工程上遇到的一些問題。
2、高等數學側重於應用 而數學分析更側重於理論的推導 。
3、數學分析每一個定理都有嚴格的證明,所有的定理最後都歸結與6個等價的原理;高等數學講究應用,很多定理是直接給出,或者給出一段簡單的描述,書本里關於應用的內容很多。
4、數學分析更偏重於推導過程,而高等數學更偏重於結果的使用。
5、數學分析作為數學系本科生的基礎課是整個分析學的基礎,數學分析是檢驗一個人對數學是否感興趣的標杆。
8樓:匿名使用者
數學分析一般為數學專業的教材,其他理科專業主要學習高等數學。
數學分析比高等數學難度大。但是高等數學涵蓋的內容除了數學分析的一些基本知識微積分的部分,還有空間解析幾何的內容。學理論物理基本上高等數學就夠用了。
如果你要考研,那高數考試內容還含有概率統計和線性代數兩塊內容,不過還是以微積分為主。
9樓:free無法修改
高數跟數分一比就是渣渣
10樓:匿名使用者
高等數學是本科學的,其實算挺簡單的了。數學分析是研究生學的,像聽天書一樣。
11樓:匿名使用者
簡單說,論廣度,高等數學範圍更廣。
論深度,數學分析更深。
做理論物理怎麼能不學數學分析呢,高等代數太淺了。
12樓:匿名使用者
數學分析是數學專業的基礎課,比高等數學精細
高等數學是除數學專業外其他系的數學教程,內容比數學分析廣泛,涵蓋很多數學知識,數學分析的內容也在其中
高等數學和數學分析有什麼區別啊
13樓:匿名使用者
【補充】 具體課程設定要看各個系的安排,也許你們系對數學要求高,也許到時候書上很多東西都不講,……我們就是,看上去課本挺難的,最後難的地方都跳過去了。。。。呵呵
數學分析是近代數學的三大分支之一——代數、幾何與分析,它的外延大於微積分。所以數學系以「數學分析」作為課程名是比較嚴謹的。
而非數學系之所以用「高等數學」作為課程名,僅僅是拿它與中學所學的初等數學相比較,與其內容並無確定的關係。一般而言,高等數學指的是微積分(一元微積分、多元微積分),但是有的學校或專業的高數課程還會包括場論初步、線性代數、概率統計。有時「線性代數」會因其重要性而單列出來作為一門課,彷彿線性代數不包括於高數中,但實際上這只是為了教學上稱呼方便。
在教學要求上,數學系的《數學分析》偏重嚴格的證明,而非數學系的《高等數學》這方面要求低些,更注意計算和應用。但兩者的分別也不是絕對的,有些工科專業為了加強高數的訓練,提高了嚴謹性方面的要求,增加了一些分析中與現代數學的介面,從而形成所謂《工科數學分析》課程,但其本質上還是高等數學。
14樓:匿名使用者
非數學專業的學生學高等數學和線性代數
數學專業的學習高等代數和數學分析
後兩個必先兩個難無數倍
15樓:匿名使用者
通俗地說
高數比數分簡單無數倍
16樓:匿名使用者
高等數學主要學代數
數學分析主要學微積分
17樓:ys袁森
簡單說,在大學裡面,數學學院的學生學習的微積分知識叫做 數學分析
而非數學專業的學生學習的微積分叫做 高數
18樓:詹靖連依辰
高等數學側重於為微積分的工程應用打基礎,相對容易一些;
數學分析側重於微積分的理論分析,相對深一些。
19樓:佔然萬伶
一般數學
專業的同學會學數學分析,注重分析證明過程。
一般理科,工科的同學會學高等數學,重要結論不用證明過程,不太注重,把數學當成工具。
一般財經科的同學會學經濟數學。比較注重概率,數理統計,不太注重微積分什麼的。
20樓:孫芳鍾離運珧
數學分析是數學專業
的基礎專業課,但有的學校和其他專業也有學數學在分析的。數學分析是將高等數學中的一些定理的來龍去脈講的很清楚,比高等數學講的要深,而且講的廣,主要側重理論。而高等數學主要側重於計算,主要是微積分。
如果樓主想要搞理論物理的話,我還是推薦您去學習數學分析,數學分析可以讓你鍛鍊你的思維,由於我是數學專業的,所以我推薦兩本教材,一本是由華東師範大學數學系編的,由高等教育出版社出版的《數學分析》,還有一本是復旦大學出的《數學分析》,希望對樓主有幫助。
高等數學,判斷級數收斂問題。如果是收斂,判斷是絕對還是條件
an n cos nx 3 2 n n 2 n 後者用根植法得 limn 1 n 2 1 2 1,收斂,則原級數絕對收斂。高等數學。怎麼判斷是絕對收斂還是條件收斂?加絕對值收斂,不加也收斂則絕對收斂 加絕對值不收斂,不加收斂則條件收斂。顧名思義,先判斷級數是否收斂,再判斷加絕對值是否收斂,收斂則絕對...
高等數學判斷級數的斂散性,高等數學判斷級數斂散性
記級數的收斂半徑為r,級數在x 2處收斂,說明 2 r,從而 3 2 高等數學判斷級數斂散性 4 1 lim a lim1 n 0 a 1 n 1 1 n a 根據交錯級數收斂性的判定定理,該級數收斂,但條件收斂。2 1 2n 1 1 2n 1 2 1 n 後者發散,則原級數發散。3 sinn 2 ...
高等數學條件絕對收斂,判斷( 1n 1)(n(3(n
這兩來個級數都是收斂的源 首先第一個他是交錯bai級數,根據萊布du尼茨準則,n,趨向於無窮zhi的時候dao,整體趨向於零,而且他還是遞減的,所以,集數是收斂的 第二個,他是一個任意項級數,這個時候我們需要將它取絕對值,然後運用放縮它小於一個收斂的級數,那麼他就絕對,收斂,所以一個級數絕對收斂,他...