向量積和數量積的書寫區別?謝謝,向量積和數量積的區別和含義

2021-05-20 01:51:32 字數 4526 閱讀 9952

1樓:匿名使用者

向量積×,數量積用·,a×b向量積表示與a,b都垂直的向量,數量積是個數

2樓:葉憶

向量積是叉乘x,數量積是點乘·

3樓:普姿宿沛

數量積的結果是數值,向量積的結果仍然是向量。

向量積和數量積的區別和含義

4樓:匿名使用者

向量積(帶方向):也被稱為向量積、叉積(即交叉乘積)、外積,是一種在向量空間中向量的二元運算。與點積不同,它的運算結果是一個偽向量而不是一個標量。

並且兩個向量的叉積與這兩個向量都垂直。 叉積的長度 |a × b| 可以解釋成以 a 和 b 為邊的平行四邊形的面積.(|a||b|cos)。

一個簡單的確定滿足「右手定則」的結果向量的方向的方法是這樣的:若座標系是滿足右手定則的,則將右手的拇指指向第一個向量的方向,右手的食指指向第二個向量的方向,那麼結果向量的方向就是右手中指的方向。由於向量的叉積由座標系確定,所以其結果被稱為偽向量。

數量積 (不帶方向):又稱「內積」、「點積」,物理學上稱為「標量積」。兩向量a與b的數量積是數量|a|·|b|cosθ,記作a·b;其中|a|、|b|是兩向量的模,θ是兩向量之間的夾角(0≤θ≤π)。

即已知兩個非零向量a和b,它們的夾角為θ,則數量|a||b|cosθ叫做a與b的數量積,記作a·b

數學向量中向量積與數量積有什麼區別?適用於什麼?謝謝

5樓:匿名使用者

向量積是所謂的叉乘,數量積是點乘,向量積主要應用於面積計算和法向量計算和某些物理問題,數量積麼,就是老師無聊讓你算著玩的。

6樓:匿名使用者

數量積是沒有方向只有大小的兩個量的積,向量積是兩個既有大小又有方向的兩個量的積

7樓:劉張戴

向量積與向量積的模區別

向量積與數量積有什麼區別

8樓:度夏山彌棠

向量數量積是兩向量的模相乘再乘以兩向量夾角的餘弦值,而向量的向量積是兩模相乘再乘夾角正弦值,此外數量積結果是個標量,向量積結果仍是向量

9樓:少苒鄺婷秀

向量積的結

果是向量,數量積的結果是標量。

向量a×向量b=(absinθ)c°,

c°--是垂直與a.b向量的單位向量。方向符合右手法則。|a×b|=absinθ.(θ---

a,b夾角)

向量a.向量b=abcosθ

(是標量).

10樓:居玲玲開運

解:符號

大小方向

數量積:.模長之積*cos(夾角)

無向量積:*

模長之積*sin(夾角)

右手定則

右手定則:a*b

的方向為:

右手大拇指指向a,食指指向b,中指與大拇指和食指所在平面相垂直中指方向為向量積方向

11樓:y神級第六人

數量積的結果是數值,向量積的結果仍然是向量.

向量積(帶方向):也被稱為向量積、叉積(即交叉乘積)、外積,是一種在向量空間中向量的二元運算。與點積不同,它的運算結果是一個偽向量而不是一個標量。

並且兩個向量的叉積與這兩個向量都垂直。 叉積的長度 |a × b| 可以解釋成以 a 和 b 為邊的平行四邊形的面積.(|a||b|cos)。

一個簡單的確定滿足「右手定則」的結果向量的方向的方法是這樣的:若座標系是滿足右手定則的,則將右手的拇指指向第一個向量的方向,右手的食指指向第二個向量的方向,那麼結果向量的方向就是右手中指的方向。由於向量的叉積由座標系確定,所以其結果被稱為偽向量。

數量積 (不帶方向):又稱「內積」、「點積」,物理學上稱為「標量積」。兩向量a與b的數量積是數量|a|·|b|cosθ,記作a·b;其中|a|、|b|是兩向量的模,θ是兩向量之間的夾角(0≤θ≤π)。

即已知兩個非零向量a和b,它們的夾角為θ,則數量|a||b|cosθ叫做a與b的數量積,記作a·b

12樓:季坤由俊雅

數量級也叫標積,其運算結果是標量

運演算法則是a=b*c=b*c*cos&

大寫字母代表向量(向量),小寫字母代表相應向量的摩,&代表兩向量間夾角。「*」是乘號,書寫時應用點,

故數量積運算在口語中經常被稱為「點乘」。

向量積也叫矢積,其運算結果是向量

運演算法則是a=b×c=b*c*sin&

方向為右手螺旋,即右手握拳,拇指向上伸出,讓四指依次垂直穿過式中第一個向量和第二個向量,拇指方向即a向量方向(注意,b×c和c×b的結果不同,因為向量方向不同。而b*c和c*b的結果相同)。「×」是乘號,書寫時應用乘號,故口語中向量積運算經常被稱為「叉乘」。

向量的運算在物理中應用較多,比如計算力的功w=f*s;

圓周運動線速度v=w×r;洛倫茲力f=q*v×b等

13樓:赧杏富察綺玉

數量積的答案是數值,而向量積的答案還是向量。前者可看做標量,後者可看做向量。既然向量積可以看做向量,那麼它就有方向,其方向根據右手定則判斷。

誰能告訴我向量的數量積和向量積有什麼不同?

14樓:學雅思

一、指代不同

1、數量積:是接受在實數r上的兩個向量並返回一個實數值標量的二元運算。它是歐幾里得空間的標準內積。

2、向量積:是一種在向量空間中向量的二元運算。

二、幾何意義不同

1、數量積:在點積運算中,第一個向量投影到第二個向量上(這裡,向量的順序是不重要的,點積運算是可交換的),然後通過除以它們的標量長度來「標準化」。這樣,這個分數一定是小於等於1的,可以簡單地轉化成一個角度值。

2、向量積:叉積的長度|a×b|可以解釋成這兩個叉乘向量a,b共起點時,所構成平行四邊形的面積。據此有:

混合積[abc]=(a×b)·c可以得到以a,b,c為稜的平行六面體的體積。

三、應用不同

1、數量積:平面向量的數量積a·b是一個非常重要的概念,利用它可以很容易地證明平面幾何的許多命題,例如勾股定理、菱形的對角線相互垂直、矩形的對角線相等等。

2、向量積:在物理學光學和計算機圖形學中,叉積被用於求物體光照相關問題。求解光照的核心在於求出物體表面法線,而叉積運算保證了只要已知物體表面的兩個非平行向量(或者不在同一直線的三個點),就可依靠叉積求得法線

15樓:匿名使用者

數量級也叫標積,其運算結果是標量

運演算法則是a=b*c=b * c * cos&大寫字母代表向量(向量),小寫字母代表相應向量的摩,&代表兩向量間夾角。「*」是乘號,書寫時應用點,

故數量積運算在口語中經常被稱為「點乘」。

向量積也叫矢積,其運算結果是向量

運演算法則是a=b×c=b * c *sin&方向為右手螺旋,即右手握拳,拇指向上伸出,讓四指依次垂直穿過式中第一個向量和第二個向量,拇指方向即a向量方向(注意,b×c和c×b的結果不同,因為向量方向不同。而b*c和c*b的結果相同)。「×」是乘號,書寫時應用乘號,故口語中向量積運算經常被稱為「叉乘」。

向量的運算在物理中應用較多,比如計算力的功w=f*s;

圓周運動線速度v=w×r;洛倫茲力f=q*v×b等

16樓:匿名使用者

數量積是一個數量,乘出來是一個數,大小為兩向量的模的乘積再乘以兩向量夾角的餘弦,沒有方向。

向量積是一個向量,乘出來是一個向量,大小為兩向量的模的乘積再乘以兩向量夾角的正弦,方向與原來的兩個向量垂直且構成右手系(例如a與b的向量積的方向為伸出右手,一手腕為原點,手臂於a平行,大拇指與b平行,而當其餘四指向上立起時所指的方向為向量積的方向)(也可把a看成x軸,b看成y軸,向量積的方向和z軸方向相同)

17樓:小弟有所不知

數量積是數,向量積是向量。數量積的運算滿足交換率,而向量積不滿足。

向量積和數量積有什麼不同?

18樓:愛的風殤

符號 大小 方向

數量積: . 模長之積*cos(夾角) 無

向量積: * 模長之積*sin(夾角) 右手定則

右手定則:a*b 的方向為:

右手大拇指指向a,食指指向b,中指與大拇指和食指所在平面相垂直

中指方向為向量積方向 物理中,

數量積例如:求力做功時(考慮勻速直線運動的物體,即所受合外力為零的物體,所受的一個守恆力在物體走一段位移過程中所做的功)w=f向量 點乘 s向量

(大小為[f]*[s]*cos(夾角))

大學物理表達為 w=∫f•ds

向量積例如:磁場對電流的作用力通常稱為安培力,大量實驗證明,f=b*il ,其中f為安培力向量,b為磁感應強度向量,i為電流,l為導線長度

(大小為[b]*[i]*sin(夾角)*l,方向可用左手定則 或向量積的右手定則判斷)

左手定則為:伸開左手,讓磁感線穿過手心,四指指向電流方向,大拇指指向的就是安培力方向(即導體受力方向)。

請問向量的數量積如何計算,向量的數量積和向量積是怎麼算的?如果告訴你向量Aa,bBc,d

數量級也叫標積,其運算結果是標量 運演算法則是a b c b c cos 大寫字母代表向量 向量 小寫字母代表相應向量的摩,代表兩向量間夾角。是乘號,書寫時應用點,故數量積運算在口語中經常被稱為 點乘 向量積也叫矢積,其運算結果是向量 運演算法則是a b c b c sin 方向為右手螺旋,即右手握...

向量先向量積後數量積怎麼互換位置

向量a與向量b的向量積位置不能改變,向量積為向量,方向滿足右手定則,數量積為數可以改變方向.即 a b c c a b 數量積,向量積,混合積這三個概念有什麼不同點 數量積 向量積都是兩個向量的運算,結果分別是數量 向量。混合積是三個向量的運算,結果是一個數量。向量的數量積和向量積是怎麼算的 數量積...

平面向量中的向量的數量積和向量積是什麼,有什麼

向量積 帶方來向 也被稱為向量積自 叉積 即交叉乘積 外積,是一種在向量空間中向量的二元運則差算.與點積不同,它的運算結果是一個偽向量而不是一個標量.並且兩個向量的叉積與這兩個向量都尺茄垂直.叉積的長度 a b 可以解釋成以 a 和 b 為邊的平行四邊形的面積.a b cos 一個簡單的確定滿足 右...