1樓:穰亭晚用雁
0.存在二階導數和二階可導是一個意思!
1.二階可導只是說明二階導數存在,與三階導數是否存在沒有關係。
2.存在二階導數說明一階導數連續且可導,但不含二階導數是否可導的資訊。
2樓:匿名使用者
不是,二階可導即二階導函式可以求導,暗含了二階導函式連續(前提不是多元函式,如果是中學生就不必考慮了);二階導函式存在暗含了一階導函式連續
3樓:郟發定靈萱
不一樣比如一個半圓,y=根號下(1-x^2),兩個端點的導數是無窮大,也就是不存在
但是導數表示式還是存在的,這是1階的情況
2階同理
二階導數連續和二階導數存在的區別是什麼
4樓:學雅思
一、相關性不同
1、二階導數連續:二階導數連續則二階導數必定存在。
2、二階導數存在:二階導數存在二階導數不一定連續。
二、幾何含義不同
1、二階導數連續:二階導數連續函式圖形是連續的曲線。
2、二階導數存在:二階導數存在函式圖形不一定是連續的。
擴充套件資料
二階導數,是原函式導數的導數,將原函式進行二次求導。一般的,函式y=f(x)的導數yˊ=fˊ(x)仍然是x的函式,則y′′=f′′(x)的導數叫做函式y=f(x)的二階導數。在圖形上,它主要表現函式的凹凸性。
如果一個函式f(x)在某個區間i上有f''(x)(即二階導數)>0恆成立,那麼對於區間i上的任意x,y,總有:f(x)+f(y)≥2f[(x+y)/2],如果總有f''(x)<0成立,那麼上式的不等號反向。
幾何的直觀解釋:如果一個函式f(x)在某個區間i上有f''(x)(即二階導數)>0恆成立,那麼在區間i上f(x)的圖象上的任意兩點連出的一條線段,這兩點之間的函式圖象都在該線段的下方,反之在該線段的上方。
結合一階、二階導數可以求函式的極值。當一階導數等於0,而二階導數大於0時,為極小值點。當一階導數等於0,而二階導數小於0時,為極大值點;當一階導數和二階導數都等於0時,為駐點。
設f(x)在[a,b]上連續,在(a,b)內具有一階和二階導數,那麼,若在(a,b)內f''(x)>0,則f(x)在[a,b]上的圖形是凹的;若在(a,b)內f(x)<0,則f(x)在[a,b]上的圖形是凸的。
5樓:匿名使用者
二階導數連續 = 二階導數存在 同時 二階導函式還要是連續函式
也就是說,二階導數連續則二階導數一定存在;
反之,二階導數存在則二階導數不一定連續
6樓:匿名使用者
二階導數連續是存在且連續的。
二階導數存在是存在,不一定連續。
在某點二階可導和在某點存在二階導數有什麼區別?
7樓:匿名使用者
某點bai
存在二階可導不可以使用2次洛du必達法則。
zhi因為某點二階可導,推dao不出該領域內一階版可導。函式權在某區間上二階可導,這個條件強。說明導函式連續,在一階領域內可導。。。
可以使用2次洛必達法則。但是你問的是同一個意思。並不是某區間二階可導
函式二階可導和函式二階連續可導的區別
8樓:常常喜樂
區別:(1)函式
二階可導是指函式具有二階導數,但是二階導數的連續性無法確定;
(2)函式二階連續可導是指函式具有二階導數,並且它的二階導數是連續的。
9樓:大帆打飯
你這是在瞎說。二節可導只能說明一階導數連續。二階連續可導說明二階導數也連續。
10樓:匿名使用者
區別是二階可導只能說明二階導數存在,而二階連續可導說明二階導數存在且連續
共同點是二者都能推匯出一階導數存在且連續這個條件
11樓:一邊去
二階可導指的是函式二階可導,但是二階導函式的連續性我們是未知的,也就是說可能有間斷點,而二階連續可導,是指不但二階導函式存在,而且二階導函式還連續。
12樓:依然一起
二階可導指它有二階的導函式,二階連續可導指的是二階導函式是連續函式
函式二階可導,二階導數連續嗎,函式二階可導和函式二階連續可導的區別
不一定的。二階導 bai只du能保證一階 導連續 n階導只能保證n 1階導連續zhi。原因涉及到數學dao系的專一些知識,對於高數,你可以回憶這麼一個結論 可導一定連續,屬也就是說一階可導,函式是連續的,但是一階的導函式本身卻不是。對於高階是一樣的 函式二階可導和函式二階連續可導的區別 區別 1 函...
求最值為什麼要求二階導數,為什麼二階導數可以判斷極值
解答 對於在x0處連續函式f x 可以引用f x0 和f x0 來判斷極值的大小和性質 當f x0 0,且 f x0 0時,則f x0 為極值 1 f x0 0時,則f x0 為極大值 2 f x0 0時,則f x0 為極小值。由此可以看出二階導數的的一個重要作用。可以不求二次導,但是要判斷極值點左...
什麼是函式的二階導數,函式的二階導數是用來求什麼的?
階導數懸賞分 自0 離問題結束bai還有 14 天 22 小時du提問者 瑾笠 初學 一級zhi回答 1 如果你dao 知道導數的基本定義的話,那麼二階導數其實就是一階導數的基礎上繼續對自變數求導而得到的導函式 2 二階導數的正負和函式的走勢形狀有關,或者說和函式的拐點有關。凸凹函式都有一些很好的不...