數學排列組合問題,求解答,最後一問的答案是怎麼來的

2021-05-15 22:56:03 字數 1462 閱讀 7820

1樓:123請問額

0不在最後一位的偶數,則最後一位是2,4,6,8四個裡選一個;

首位是從去掉0,和最後一位上的數字後,剩下的8個數字裡選一個;

中間兩位是去掉首位和最後一個上的數字後,剩下的8個數字裡選2個,並排列

2樓:匿名使用者

0-9裡的偶數0.2.4.6.8,共五個,除了0之外還剩4個c14表示剩下的4個偶數取一個排在末位

c18表示除了0個一個偶數剩下8個數,取其中一個排在首位p28表示除了首位末位2個數還剩下8個數,任取2個放在中間

3樓:匿名使用者

4c1指的是末位2 4 6 8 裡選一個

8c1指的是首位在除0和末位選的數以外的數選一個

8p2指的是剩下的數裡選

數學排列組合問題。求第一問解題過程

4樓:匿名使用者

分三步:

第一步,

先安排數字1的位置,

共有6個位置可選,6種可能。

第二步,安排兩個2的位置,

可從剩下的5個位置挑出2個,

共有c(5, 2) =10種可能。

第三步,安排剩下的三個3,

沒得選,只剩下三個位置,只有1種。

根據乘法原理,總數為6*10*1=60種。

5樓:匿名使用者

現在的數學題很難,現在的數學都排列組合問題,我想問第一題解答過程,你這樣交我們這個問題,我們聽不懂,你給我們講清楚點

數學排列組合問題,求解答過程?

6樓:飛雪飄迷

這個題目,每個盒子裡可以放多個球,所以每個球都有四種選擇,無關先後,所以總的可能性就是4的4次方=256種,然後恰好有一個空盒,那就先選出一個空盒,就是c41=4,然後剩下三個盒不能空,只能是有一個盒放兩個球,然後其餘兩個盒各一個球,這樣可以先選兩個球作為一組,就是c42=6,這一組連同另兩個球放在三個盒子裡,就是一個全排列,a33=6,所以恰有一個空盒的可能情況有4乘6乘6=144種。

144/256=9/16

數學排列組合的問題!求解答思路不要光答案,自己有看不懂才來求助

7樓:匿名使用者

第一問正確

所以第二問m取值0 2 3 4 5的可能(一不可能是 不會只一個不對…至少兩個)二的情況同上問十個 三的情況應該是二十種(c 3 5*2(二的含義每個三個數都有六種排列 其中只有兩種是三個位置都變的 符合條件))然後四的是45種(任取四個數來看 有兩個不同的是六種 三個不同的是八種 完全相同一種 所以四個不同有九種 因此c4 5*9=45)至於五種 你可以用一減去以上所有情況得到(別忘了加上完全一樣的一種 應該44吧)還有最後一個是完全相同的一種…總計一百二十個把個數分別除一百二求概率期望…別的就不說了 你有答案的…我想應該是這種想法 答案不知正確與否了

數學問題,關於排列組合,急!關於數學排列組合問題

計算紅球和黑球編號相 等的情結果數,然後將總結果數減相等結果數再除以2,因為紅球的編號之和小於黑球編號之和的排法和大於的排法肯定一樣 1 2 8 4 9,編號相等的結果必須有四組,其中每組一黑球一白球的編號和為9 則有 1,8 2,7 3,6 4,5 4種再加上紅黑互換編號就是8種 總結果數為c 8...

數學的排列組合問題一道高中數學排列組合問題

其實這兩個題區別的在於,第二 題有標誌物 種子選手。相當於第二題中兩個組已經有了一個種子選手作為組長,剩下的1 8個人分到兩個組是有區別的,譬如c84選出來的是1 4,跟了第一個種子選手和跟了第二個種子選手是兩種不同的分組方法。所以c84之後要乘以2.但是第一題不同,兩人選取贈品都是隨意的。沒有標誌...

有關排列組合的數學問題

因為每封信投到每個信箱的概率是一樣的,所以,每封信有3種可能。一共有4封信,所以共有3 3 3 3種可能。即答案為 3 4 81種可能。暈。你題目沒說其他條件,只說把四封信投入三個信箱,當然就81種。如果一定要有一個信封有兩封信,則解法當然不同啦。按你說的。其中乙個信封一定要有兩封信,則先抽兩封信出...