令方程中的旋度為0與對該方程求散度,是不是一回事

2021-03-19 18:19:17 字數 1952 閱讀 5471

1樓:飛躍喜馬拉雅

其實我覺得這就是個數學的運算而已,算是小技巧吧

如果非要解釋的話,就是求它的源,求散度就是求源哦

散度梯度旋度的關係和應用 ??

2樓:匿名使用者

關係:三者轉換關係:

散度指流體運動時單位體積的改變率。簡單地說,流體在運動中集中的區域為輻合,運動中發散的區域為輻散。 其計算也就是我們常說的「點乘」。 散度是標量,物理意義為通量源密度。

散度物理意義:對流體來說,就是流體的形狀雖然改變,但是由於散度為0,則其面積或體積不變。如下式

梯度物理意義:最大方向導數(速度)

散度物理意義:對流體來說,散度指流體運動時單位體積的改變率。就是流體的形狀雖然改變,但是由於散度為0,則其面積或體積不變。

旋度物理意義:旋度是曲線,向量場旋轉的程度。向量的旋度是環流面密度的最大值,與面元的取向有關。

散度為零,說明是無源場;散度不為零時,則說明是有源場(有正源或負源)

若你的場是一個流速場,則該場的散度是該流體在某一點單位時間流出單位體積的淨流量. 如果在某點,某場的散度不為零,表示該場在該點有源,例如若電場在某點散度不為零,表示該點有電荷,若流速場不為零,表是在該點有流體源源不絕地產生或消失(若散度為負).

一個場在某處,沿著一無窮小的平面邊界做環積分,平面法向量即由旋度向量給定,旋度向量的長度則是單位面積的環積分值.基本上旋度要衡量的是一向量場在某點是否有轉彎.

3樓:

三者的關係:注意各自針對的物件不同。

1.梯度的旋度▽×▽u=0

梯度場的旋度為0,故梯度場是保守場。例如重力場。

2.梯度的散度▽2u=△u 3.散度的梯度▽(▽·a)

梯度、散度和旋度是向量分析裡的重要概念。之所以是「分析」,因為三者是三種偏導數計算形式。這裡假設讀者已經瞭解了三者的定義。它們的符號分別記作如下:

梯度、散度和旋度

從符號中可以獲得這樣的資訊:

①求梯度是針對一個標量函式,求梯度的結果是得到一個向量函式。這裡φ稱為勢函式;

②求散度則是針對一個向量函式,得到的結果是一個標量函式,跟求梯度是反一下的;

③求旋度是針對一個向量函式,得到的還是一個向量函式。

這三種關係可以從定義式很直觀地看出,因此可以求「梯度的散度」、「散度的梯度」、「梯度的旋度」、「旋度的散度」和「旋度的旋度」,只有旋度可以連續作用兩次,而一維波動方程具有如下的形式

梯度、散度和旋度                               (1)

其中a為一實數,於是可以設想,對於一個向量函式來說,要求得它的波動方程,只有求它的「旋度的旋度」才能得到。下面先給出梯度、散度和旋度的計算式:

4樓:情誼兩重天

散度梯度旋度其實是物理上的一種概念,主要在流體

力學裡應用!

在流體力學數學基礎裡可以查到他們的意義與關係!高數裡也有簡單涉及,如果想深入瞭解,建議你最好去查查有關流體力學基礎的東西!其中有個名詞叫哈密跟運算元,散度梯度旋度跟這一名詞的關係明白了,其它的相關運算也就會了!

怎麼理解旋度的散度恆為零

5樓:匿名使用者

從流體的角度來看,

散度表示的是一個場的淨流出量

。(*** flow out of a region)旋度表示的是一個場的旋轉量度。(rotation of a fluid)

當你取一個場的旋度時(三維的,好理解點),已經把流出量排除在外了。這也正是為什麼curl叫做「旋度」,因為這個量表示的只有旋轉方向的勢強度,已經把淨流出量排除在外。

換句話說,所有場的curl都不會有任何勢的流出。

觀察三維旋度的公式,比如組成部分z上是「dfy/dx-dfx/dy」的形式,也就是「另外兩個分量的導數的差在這個分量方向的度」。由於座標軸x,y,z都是兩兩正交的,因此這個量在任意一個方向都不會有沿著這個方向勢的「流出」。

急電磁波與微波技術中散度,旋度,梯度的關係

散度和抄旋度是形容向量場的,梯 襲度是形bai容標量場的 散讀表du示一個向量場向外發zhi散的程度 旋度表 散度梯度旋度的關係和應用 關係 三者轉換關係 散度指流體運動時單位體積的改變率。簡單地說,流體在運動中集中的區域為輻合,運動中發散的區域為輻散。其計算也就是我們常說的 點乘 散度是標量,物理...

微分方程yy y 0的通解為,微分方程y y 0的通解為

可以啊先解出特徵根 rr r 1 0,得r 1加減 根號3 i 2 根據通解的形式,因為特徵根是一對共軛複數 所以通解為 y e x 2 c1cos 根號3 x 2 c2sin 根號3 x 2 這公式可 以看一下微分方程這一章,任一本高數書上都應該有的,這是常係數線性微分方程。特徵方程為 r 2 r...

微分方程yy 0的通解為,微分方程y y 0的通解是y

特徵方程為 r 2 r 1 0,r 1 2 5i 2,有一對共軛復根,實部 1 2,虛部 5 2 微分方程通解為 y e x 2 c1cos 5x 2 c2sin 5x 2 付費內容限時免費檢視 回答你好 微分方程y y 0的通解為?解 y y 0的特徵方程是r 3 1 0,則它的根是r 1和r 1...