函式的極限存在是什麼概念,如何判斷極限是否存在,什麼樣的極限不存在

2021-05-18 05:24:22 字數 5613 閱讀 6372

1樓:安克魯

極限存在的意思是:

當x取某個值

時,將此x代入函式或表示式時,可能能夠算出某個值,也可能根本不可以代入,因為在代入時,出現瞭如分母為零之類的不合理情況。

但是,當x趨向於這個值的過程中,每次算出的值越來越趨向於一個定值,或者說越來越接近、無限接近這個定值。我們就說該函式在這點的極限存在。

函式的極限存在是什麼概念

2樓:匿名使用者

函式極限存在,即在x趨於某一個值時,函式值也趨近於某一個值,即函式收斂。

如何判斷極限是否存在,什麼樣的極限不存在

3樓:pasirris白沙

樓上網友的說法,確實是書

4樓:詩柳富

極限存在的兩個準則,老師教你常考題型的解釋

5樓:塞玉巧鎖黛

如何判斷極限是否存在?

1、不存在:高數中極限存在就是指極限求出來是一個具體的唯一的數2、如x趨於0時

sinx的極限是0等

3、極限不存在就是求出來不是一個確定的數

4、存在;一種是求出來為

無窮大或無窮小

如tanx當x趨於π/2時

5、另一種就是求出來是不確定的數

如sinx當x趨於無窮大時

【事實上屢見不鮮的反例】:

a、所有的暇積分,所有的廣義積分,通通、統統建立在單側極限上,能不算?誰敢不算?

b、所有的

n趨向於

無窮大型的數列極限,哪個不是單側極限?

6樓:破費特英

極限不存在是指:

極限為無窮大時,極限不存在.

左極限與右極限不相等.

極限存在是指:

存在左右極限且左極限等於右極限

函式連續

函式的值等於該點處極限值

「極限」是數學中的分支——微積分的基礎概念,廣義的「極限」是指「無限靠近而永遠不能到達」的意思。數學中的「極限」指:某一個函式中的某一個變數,此變數在變大(或者變小)的永遠變化的過程中,逐漸向某一個確定的數值a不斷地逼近而「永遠不能夠重合到a」(「永遠不能夠等於a,但是取等於a『已經足夠取得高精度計算結果)的過程中,此變數的變化,被人為規定為「永遠靠近而不停止」、其有一個「不斷地極為靠近a點的趨勢」。

極限是一種「變化狀態」的描述。此變數永遠趨近的值a叫做「極限值」(當然也可以用其他符號表示)。

極限思想是微積分的基本思想,是數學分析中的一系列重要概念,如函式的連續性、導數(為0得到極大值)以及定積分等等都是藉助於極限來定義的。如果要問:「數學分析是一門什麼學科?

」那麼可以概括地說:「數學分析就是用極限思想來研究函式的一門學科,並且計算結果誤差小到難於想像,因此可以忽略不計。

7樓:睢可欣侯畫

判斷極限是否存在的方法是:

分別考慮左右極限。

8樓:碎夢不醒

判斷極限是否存在看趨向於的值是否是具體值,如果趨向於無窮,則極限不存在,振盪函式極限也不存在。

9樓:紫戀式

數列極限和函式極限本來就是兩個概念!

10樓:匿名使用者

如果是函式極限就是左右相等才行

11樓:

單側極限與極限是倆個概念,單側極限是否存在於極限是否存在沒有必然聯絡。

12樓:孤癲狂人

極限存在的充要條件就是左極限右極限都存在且相等。

請問極限的概念是什麼?

13樓:匿名使用者

極限的定義分為四個部分:

1、對任意的ε>0:ε在定義中的作用就是刻畫出在x→x0時,f(x)可以無限接近於常數a,也就是∣f(x)-a∣可以任意小。為了達到這一要求,所以ε必須可以足夠小。

(考試中經常在ε上做文章)

2、存在δ>0:δ就是這個鄰域的半徑,x→x0所能取到的所有點就是(x0-δ,x0)∪(x0,x0+δ),這裡x取不到x0.但是這個鄰域δ到底有多大、距離x0有多遠,我們不知道,也沒有必要知道,只要知道δ是很小的一個數就可以啦。

3、0<∣x-x0∣<δ:自變數x→x0時,再次強調一下,x取不到x0這個點,但是可以取到x0附近和兩側的所有點。這就涉及到鄰域的概念,鄰域通俗講就是以點x0為中心的附近和兩側所有點,是一個區域性概念。

4、∣f(x)-a∣<ε:既然ε可以足夠小,則f(x)可以無限接近於常數a,也就是f(x)→a,這裡需要注意一點,雖然自變數x不能取到x0這個點,但是因變數f(x)是可以取到a的。

特別注意:函式在一點的極限存不存在和函式在這個點有沒有定義沒有關係。

擴充套件資料

極限的性質:

1、唯一性:存在即唯一

關於唯一性,需要明確x趨向於無窮,意味著x趨向於正無窮並且x趨向於負無窮;同理,x→xo,意味著x趨向於xo正且趨向於x0負。

比如:x趨向於無窮的時候,e^x的極限就不存在,因為x趨向於正無窮的時候e^x是無窮,x趨向於負無窮的時候e^x是0,根據極限存在的唯一性,所以這個極限不存在。

2、區域性有界性:存在必有界

極限存在只是函式有界的充分條件,而非必要條件,即函式有界但函式極限不一定存在。

判別有界性的方法

(1)理論法:函式在閉區間上連續,則函式必有界。

(2)計演算法:函式在開區間上連續且左右極限都存在,則函式有界。

(3)四則運演算法:有限個有界函式的和、差、積必有界。

3、區域性保號性:保持不等號的方向不變

極限大於零則在x→x0中函式大於零,把極限符號可以直接去掉,俗稱「脫帽法」。函式非負,則在極限存在的條件下,極限非負。這個結論成立的前提條件一定不能忘,一定要驗證一下函式極限是否存在。

14樓:閃亮登場

極限在高等數學中,極限是一個重要的概念。

極限可分為數列極限和函式極限,分別定義如下。

首先介紹劉徽的"割圓術",設有一半徑為1的圓,在只知道直邊形的面積計算方法的情況下,要計算其面積。為此,他先作圓的內接正六邊形,其面積記為a1,再作內接正十二邊形,其面積記為a2,內接二十四邊形的面積記為a3,如此將邊數加倍,當n無限增大時,an無限接近於圓面積,他計算到3072=6*2的9次方邊形,利用不等式an+1n時,不等式

|xn - a|<ε

都成立,那麼就成常數a是數列|xn|的極限,或稱數列|xn|收斂於a。記為lim xn = a 或xn→a(n→∞)

數列極限的性質:

1.唯一性:若數列的極限存在,則極限值是唯一的;

2.改變數列的有限項,不改變數列的極限。

幾個常用數列的極限:

an=c 常數列 極限為c

an=1/n 極限為0

an=x^n 絕對值x小於1 極限為0

函式極限的專業定義:

設函式f(x)在點x。的某一去心鄰域內有定義,如果存在常數a,對於任意給定的正數ε(無論它多麼小),總存在正數δ ,使得當x滿足不等式0<|x-x。|<δ 時,對應的函式值f(x)都滿足不等式:

|f(x)-a|<ε

那麼常數a就叫做函式f(x)當x→x。時的極限。

函式極限的通俗定義:

1、設函式y=f(x)在(a,+∞)內有定義,如果當x→+∽時,函式f(x)無限接近一個確定的常數a,則稱a為當x趨於+∞時函式f(x)的極限。記作lim f(x)=a ,x→+∞。

2、設函式y=f(x)在點a左右近旁都有定義,當x無限趨近a時(記作x→a),函式值無限接近一個確定的常數a,則稱a為當x無限趨近a時函式f(x)的極限。記作lim f(x)=a ,x→a。

函式的左右極限:

1:如果當x從點x=x0的左側(即x〈x0)無限趨近於x0時,函式f(x)無限趨近於常數a,就說a是函式f(x)在點x0處的左極限,記作x→x0-limf(x)=a.

2:如果當x從點x=x0右側(即x>x0)無限趨近於點x0時,函式f(x)無限趨近於常數a,就說a是函式f(x)在點x0處的右極限,記作x→x0+limf(x)=a.

注:若一個函式在x(0)上的左右極限不同則此函式在x(0)上不存在極限

函式極限的性質:

極限的運演算法則(或稱有關公式):

lim(f(x)+g(x))=limf(x)+limg(x)

lim(f(x)-g(x))=limf(x)-limg(x)

lim(f(x)*g(x))=limf(x)*limg(x)

lim(f(x)/g(x))=limf(x)/limg(x) ( limg(x)不等於0 )

lim(f(x))^n=(limf(x))^n

以上limf(x) limg(x)都存在時才成立

lim(1+1/x)^x =e

x→∞無窮大與無窮小:

一個數列(極限)無限趨近於0,它就是一個無窮小數列(極限)。

無窮大數列和無窮小數列成倒數。

兩個重要極限:

1、lim sin(x)/x =1 ,x→0

2、lim (1 + 1/x)^x =e ,x→∞ (e≈2.7182818...,無理數)

15樓:假裝隨便

數列型:對任意#,總存在一個%,當x大於%時,有f(x)到某個值的距離小於任意的#

點型:對任意#,總存在一個%,當x到某個點的距離小於%時,有f(x)到某個值的距離小於任意的#

無窮型:對任意#,總存在一個%,當x到小於%的絕對值時,有f(x)到某個值的距離小於任意的#

/ 其中#規定無限接近的概念

/ %規定了x的範圍:是無窮的大;還是某點領域;還是無窮

16樓:匿名使用者

極限基本解釋

1.是指無限趨近於一個固定的數值。

2.數學名詞。在高等數學中,極限是一個重要的概念。

極限可分為數列極限和函式極限.

學習微積分學,首要的一步就是要理解到,「極限」引入的必要性:因為,代數是人們已經熟悉的概念,但是,代數無法處理「無限」的概念。所以為了要利用代數處理代表無限的量,於是精心構造了「極限」的概念。

在「極限」的定義中,我們可以知道,這個概念繞過了用一個數除以0的麻煩,而引入了一個過程任意小量。就是說,除數不是零,所以有意義,同時,這個過程小量可以取任意小,只要滿足在δ的區間內,都小於該任意小量,我們就說他的極限為該數——你可以認為這是投機取巧,但是,他的實用性證明,這樣的定義還算比較完善,給出了正確推論的可能。這個概念是成功的。

數列極限標準定義:對數列,若存在常數a,對於任意ε>0,總存在正整數n,使得當n>n時,|xn-a|<ε成立,那麼稱a是數列的極限。

函式極限標準定義:設函式f(x),|x|大於某一正數時有定義,若存在常數a,對於任意ε>0,總存在正整數x,使得當x>x時,|f(x)-a|<ε成立,那麼稱a是函式f(x)在無窮大處的極限。

設函式f(x)在x0處的某一去心鄰域內有定義,若存在常數a,對於任意ε>0,總存在正數δ,使得當

|x-xo|<δ時,,|f(x)-a|<ε成立,那麼稱a是函式f(x)在x0處的極限。

極限的性質

性質1 唯一性   性質2 有界性   性質3 保號性   性質4 夾逼準則

擴充套件閱讀:

1 《高等數學(一)》全國高等教育自學考試指定教材[2023年版]。

2 武漢大學-章學誠-2023年2月

3 高等數學同濟五版

證明函式極限不存在都有什麼方法,函式極限不存在有哪幾種情況?

x a 函式極限存在的充分必要條件是左右極限都存在並且相等,如果這個條件的不滿足則極限不存在,具體有 左極限不存在 右極限不存在 左右極限都存在但是不相等。x a或x 如果能選出兩列xn,使得f xn 趨於兩個不同的極限值,則極限不存在。當x 1時,f x x的平方減去1 當x 1時,f x 0 當...

極限存在的條件是什麼 什麼時候極限不存在 什麼時候函式極

這裡的正數是任意的,隨便你給出多大或者多小,但是給出很大的數沒有驗證的意義 比如對於an 1 n,你給出100,那麼隨便n怎麼取都滿足 an 0 100,這樣驗證的沒有意義 所以證明的時候省略了任意大的情況,只證明任意小的情況 我認為,極限值為無窮小,和無窮大,則就是極限不存在,不是說x趨近無窮小或...

高等數學,極限練習題,求此函式的極限是否存在?有圖,請給過程謝謝

當x趨於0 是f x 為正無窮,當x趨於0 時f x 為0.左右極限雖然存在但是不等。所以極限不存在!x 0 時,1 x 所以,e 1 x x 0 時,1 x 所以,e 1 x 0所以,lim x 0 f x 不存在 不存在。當x 0時,1 x 2的 次方是 故極限不存在。不存在,x 0 時,f x...