一道簡單高中數學題 請進 請詳細說明!謝謝!)

2022-09-30 17:45:11 字數 869 閱讀 7482

1樓:jay吳小磊

a錯,利用均值 當sinx=cosx 取最大值 所以最大值為:根號2<1.5。

b對,左右兩邊都是遞增函式,指數函式增的快,另一個是一次函式,你可以畫一下影象。

c錯,化簡x²+x+1=0,利用公式b^2-4ac<0,所以無實數解。

d錯,你可以畫下影象。

2樓:匿名使用者

a不對,sinx+cosx=√2*cos(π/4)*sinx+√2*sin(π/4)*cosx=√2sin(x+π/4),最大值√2<1.5

b正確,設f(x)=e^x-(x+1),f'(x)=e^x-1,在(0,+∞)上f'(x)恆正,f(x)單調遞增,且x=0時f(x)=0,所以

對任意x∈(0,+∞)有e^x>x+1

cx²+x+1=0的判別式δ=1-4=-3<0,無實數解dx∈[0,π/4)時sinx

3樓:匿名使用者

答案b a:sinx+cosx=根號2倍sin(x+π/4)<=根號2<1.5

c:x²+x=-1=> x²+x+1=0 判別式△< 無解

d:sinx>cosx=> sinx-cosx=根號2倍sin(x-π/4) 在x∈(0,π) 原式不恆》0 所以錯了

4樓:匿名使用者

b 可以算出來

也能用排除法

a x∈r,sinx+cosx=1

c x²+x=-1

(x+1/2)^2=-5/4

d 任意x∈(0,π)畫圖分

5樓:匿名使用者

b————————————--(這個簡潔多了⊙﹏⊙b汗.......).. 只為交任務,不做參考

一道高中數學題(請進!請詳細說明!謝謝!)

得到結果不難啊。解 h x f wx 2 g wx 2 1 sin wx 2 cos wx 2 cos wx 2 12 2 1 1 2 sinwx 1 2 cos wx 6 1 3 2 1 2 sinwx cos wx 6 3 2 1 2 sinwx sin 3 wx 和差化積,得 h x 3 2 ...

急!一道簡單高中數學題,詳細解釋

a終點在以3為半徑的圓上,b的終點在以2為半徑的圓上,l始終和半徑為0.5的圓相切,圓c圓心在半徑為1的圓上,其他的自己畫吧 樓主因為我用的是手機,打著很不方便,所以就給您說下思路哈!你可以用倆向量表示出s的餘弦值,這樣化簡後可得與a b的關係,又可根據直線與圓相交得出一個範圍,這樣聯絡起來就可求出...

高中數學題,一道高中數學題

x 2 e 1 x a lny y a x 2 e 1 x lny y 令p x x 2 e 1 x q y lny y 則 p x x 2 x e 1 x 所以 在區間 0,2 p x 0,而在區間 1,0 和 2,4 p x 0 所以,在區間 0,2 p x 遞減,而在區間 1,0 和 2,4 ...