x的平方分之一的不定積分是多少,x的3次方分之一的不定積分是多少?

2021-05-04 05:39:43 字數 3853 閱讀 9066

1樓:匿名使用者

分析:1/x^2是初等函式,可直接用公式積出:

拓展資料:積分公式

注:以下的c都是指任意積分常數。

2樓:

∫x^(-2)dx=-1/x

根據公式:∫ x^a dx = [x^(a + 1)]/(a + 1) + c,其中a為常數且 a ≠ -1,冪函式的原函式還是冪函式,本來是x的-2次方,原函式應該是-1次方,再加上係數-1即可。

拓展資料不定積分:不定積分和求導運算互為逆運算,多記憶求積分公式,對於簡單的積分運算是足夠的。

3樓:

1/x^2是初等函式

可直接用公式積出:∫(1/x²)dx=-(1/x)+c初等函式是由冪函式(power function)、指數函式(exponential function)、對數函式(logarithmic function)、三角函式(trigonometric function)、反三角函式(inverse trigonometric function)與常數經過有限次的有理運算(加、減、乘、除、有理數次乘方、有理數次開方)及有限次函式複合所產生,並且能用一個解析式表示的函式。

拓展資料:在微積分中,一個函式f 的不定積分,或原函式,或反導數,是一個導數等於f 的函式 f ,即f ′ = f。不定積分和定積分間的關係由微積分基本定理確定。

其中f是f的不定積分。

一個函式,可以存在不定積分,而不存在定積分,也可以存在定積分,而沒有不定積分。連續函式,一定存在定積分和不定積分;若在有限區間[a,b]上只有有限個間斷點且函式有界,則定積分存在;若有跳躍、可去、無窮間斷點,則原函式一定不存在,即不定積分一定不存在。

4樓:機智的墨林

分析:1/x^2是初等函式,可直接用公式積出:

5樓:

∫dx/x²=-(1/x)+c

x的3次方分之一的不定積分是多少?

6樓:醉意撩人殤

^^套用公式即可:∫(1/x^3)dx=∫x^(-3)dx=[1/(-2)]x^(-2)+c=-1/(2x^2)+c。

如圖所示:

在微積分中,一個函式f 的不定積分,或原函式,或反導數,是一個導數等於f 的函式 f ,即f ′ = f。

不定積分和定積分間的關係由微積分基本定理確定。其中f是f的不定積分。

擴充套件資料:積分公式

注:以下的c都是指任意積分常數。

1、,a是常數

2、,其中a為常數,且a ≠ -1

3、4、

5、,其中a > 0 ,且a ≠ 1

6、7、

8、9、

10、11、

12、13、

14、15、

全體原函式之間只差任意常數c。

7樓:yang天下大本營

^套用公式即可:

∫(1/x^3)dx=∫x^(-3)dx=[1/(-2)]x^(-2)+c=-1/(2x^2)+c。

c為常數。

在微積分中,一個函式f 的不定積分,或原函式,或反導數,是一個導數等於f 的函式 f ,即f ′ = f。不定積分和定積分間的關係由微積分基本定理確定。其中f是f的不定積分。

這樣,許多函式的定積分的計算就可以簡便地通過求不定積分來進行。

設f(x)是函式f(x)的一個原函式,我們把函式f(x)的所有原函式f(x)+ c(c為任意常數)叫做函式f(x)的不定積分,記作∫f(x)dx或者∫f(高等微積分中常省去dx),即∫f(x)dx=f(x)+c。其中∫叫做積分號,f(x)叫做被積函式,x叫做積分變數,f(x)dx叫做被積式,c叫做積分常數,求已知函式的不定積分的過程叫做對這個函式進行積分。

由定義可知:

求函式f(x)的不定積分,就是要求出f(x)的所有的原函式,由原函式的性質可知,只要求出函式f(x)的一個原函式,再加上任意的常數c,就得到函式f(x)的不定積分。

8樓:無法____理解

^答案是-1/(2x^2)+c

解題過程:

由於∫x^ndx=x^(n+1)/(n+1)+c∫1/(x^3)dx=∫x^(-3)dx

所以n=-3代入

所以原式=[1/(-2)]x^(-2)+c=-1/(2x^2)+c解題技巧:不定積分其實就是求導的逆運算,做不定積分時要熟記常見型別的計算公式,然後根據情況選擇合適的公式套用。

拓展資料根據牛頓-萊布尼茨公式,許多函式的定積分的計算就可以簡便地通過求不定積分來進行。這裡要注意不定積分與定積分之間的關係:定積分是一個數,而不定積分是一個表示式,它們僅僅是數學上有一個計算關係。

一個函式,可以存在不定積分,而不存在定積分,也可以存在定積分,而沒有不定積分。連續函式,一定存在定積分和不定積分;若在有限區間[a,b]上只有有限個間斷點且函式有界,則定積分存在;若有跳躍、可去、無窮間斷點,則原函式一定不存在,即不定積分一定不存在。

9樓:nice千年殺

∫x^(-3)dx=-/2x²

原函式是冪函式,他的積分也是冪函式;原函式是x的-3次方,他的積分應該是x的-2次方,再配湊係數-1/2即可。

根據公式:∫ x^a dx = [x^(a + 1)]/(a + 1) + c,其中a為常數且 a ≠ -1 ;並注意熟練掌握有關的函式公式

拓展資料 不定積分:不定積分和求導運算互為逆運算,多記憶求積分公式,對於簡單的積分運算是足夠的。

10樓:舞璇瀅

x的3次方分之一的不定積分答案是-1/(2x^2)+c

套用公式即可算出:

∫(1/x^3)dx=∫x^(-3)dx=[1/(-2)]x^(-2)+c=-1/(2x^2)+c。

解題技巧:不定積分其實就是求導的逆運算,做不定積分時要熟記常見型別的計算公式,然後根據情況選擇合適的公式套用。

拓展資料:

在微積分中,一個函式f 的不定積分,或原函式,或反導數,是一個導數等於f 的函式 f ,即f ′ = f。

不定積分和定積分間的關係由微積分基本定理確定。其中f是f的不定積分。

根據牛頓-萊布尼茨公式,許多函式的定積分的計算就可以簡便地通過求不定積分來進行。這裡要注意不定積分與定積分之間的關係:定積分是一個數,而不定積分是一個表示式,它們僅僅是數學上有一個計算關係。

一個函式,可以存在不定積分,而不存在定積分,也可以存在定積分,而沒有不定積分。連續函式,一定存在定積分和不定積分;若在有限區間[a,b]上只有有限個間斷點且函式有界,則定積分存在;若有跳躍、可去、無窮間斷點,則原函式一定不存在,即不定積分一定不存在。

2、求不定積分時,被積函式中的常數因子可以提到積分號外面來。即:設函式

11樓:匿名使用者

你好!套用公式即可:∫(1/x^3)dx=∫x^(-3)dx=[1/(-2)]x^(-2)+c=-1/(2x^2)+c。經濟數學團隊幫你解答,請及時採納。謝謝!

12樓:你的眼神唯美

不定積分結果不唯一求導驗證應該能夠提高湊微分的計算能力。原式等於(1/(1+1/3))*(x^(1+(1/3)))+c=(3/4)x^(4/3)+c。

3/4是四分之三。

13樓:懷中有可抱

套用公式即可:∫(1/x^3)dx=∫x^(-3)dx=[1/(-2)]x^(-2)+c=-1/(2x^2)+c。

在微積分中,一個函式f 的不定積分,或原函式,或反導數,是一個導數等於f 的函式 f ,即f ′ = f。

不定積分和定積分間的關係由微積分基本定理確定。其中f是f的不定積分。

1 x 2 的不定積分是多少,1 1 x 2 的不定積分是多少

結果是 1 2 arcsinx x 1 x c x sin dx cos d 1 x dx 1 sin cos d cos d 1 cos2 2 d 2 sin2 4 c arcsinx 2 sin cos 2 c arcsinx 2 x 1 x 2 c 1 2 arcsinx x 1 x c拓展資...

X分之一的導數是多少?謝謝,X分之一的導數是多少

有不會的題,歡迎問老師俺。x分之一即x 1次方,它的導數就是 1 x 2 1 x2,負x的平方分之一 負x的平方分之一 1 x 1 x x 1 x n nx n 1 so 1 x x 2 x分之一你可以理解為x的 1次放,然後用冪函式的求導方式就是 1 x 2 首先介紹一下導數的定義 導數 deri...

13次根號下X1分之1的不定積分是多少

1 1 x dx 令 x t 3 1 1 x dx 3t 2 1 t dt 3t 2 3t 3t 3 3 1 t dt 3t 3 3 1 t dt 3 2 t 2 3t 3ln 1 t c返回 x。1 1 3次根號下 x 1 的不定積分 令 x 1 1 3 t,x t 3 1,dx 3t 2dt d...