1樓:佛無漏智
非奇非偶,舉例f(2)≠f(-2)≠-f(-2)
判斷函式奇偶性最好的方法
2樓:angela韓雪倩
判定奇偶性四法:
(1)定義法
用定義來判斷函式奇偶性,是主要方法 . 首先求出函式的定義域,觀察驗證是否關於原點對稱. 其次化簡函式式,然後計算f(-x),最後根據f(-x)與f(x)之間的關係,確定f(x)的奇偶性.
(2)用必要條件.
具有奇偶性函式的定義域必關於原點對稱,這是函式具有奇偶性的必要條件.
例如,函式y=的定義域(-∞,1)∪(1,+∞),定義域關於原點不對稱,所以這個函式不具有奇偶性.
(3)用對稱性.
若f(x)的圖象關於原點對稱,則 f(x)是奇函式.
若f(x)的圖象關於y軸對稱,則 f(x)是偶函式.
(4)用函式運算.
如果f(x)、g(x)是定義在d上的奇函式,那麼在d上,f(x)+g(x)是奇函式,f(x)•g(x)是偶函式. 簡單地,「奇+奇=奇,奇×奇=偶」.
類似地,「偶±偶=偶,偶×偶=偶,奇×偶=奇」.
擴充套件資料:
奇函式在其對稱區間[a,b]和[-b,-a]上具有相同的單調性,即已知是奇函式,它在區間[a,b]上是增函式(減函式),則在區間[-b,-a]上也是增函式(減函式);偶函式在其對稱區間[a,b]和[-b,-a]上具有相反的單調性。
即已知是偶函式且在區間[a,b]上是增函式(減函式),則在區間[-b,-a]上是減函式(增函式)。但由單調性不能倒導其奇偶性。驗證奇偶性的前提要求函式的定義域必須關於原點對稱。
說明:①奇、偶性是函式的整體性質,對整個定義域而言。
②奇、偶函式的定義域一定關於原點對稱,如果一個函式的定義域不關於原點對稱,則這個函式一定不具有奇偶性。
③判斷或證明函式是否具有奇偶性的根據是定義。
偶函式:若對於定義域內的任意一個x,都有f(-x)=f(x),那麼f(x)稱為偶函式。
奇函式:若對於定義域內的任意一個x,都有f(-x)=-f(x),那麼f(x)稱為奇函式。
定理奇函式的影象關於原點成中心對稱圖表,偶函式的圖象關於y軸成軸對稱圖形。
f(x)為奇函式《==》f(x)的影象關於原點對稱
點(x,y)→(-x,-y)
奇函式在某一區間上單調遞增,則在它的對稱區間上也是單調遞增。
偶函式在某一區間上單調遞增,則在它的對稱區間上單調遞減。
性質:1、大部分偶函式沒有反函式(因為大部分偶函式在整個定義域內非單調函式)。
2、偶函式在定義域內關於y軸對稱的兩個區間上單調性相反,奇函式在定義域內關於原點對稱的兩個區間上單調性相同。
3、奇±奇=奇(可能為既奇又偶函式) 偶±偶=偶(可能為既奇又偶函式) 奇x奇=偶 偶x偶=偶 奇x偶=奇(兩函式定義域要關於原點對稱).
4、對於f(x)=f[g(x)]:
若g(x)是偶函式且f(x)是偶函式,則f[x]是偶函式。
若g(x) 是偶函式且f(x)是奇函式,則f[x]是偶函式。
若g(x)是奇函式且f(x)是奇函式,則f[x]是奇函式。
若g(x)是奇函式且f(x)是偶函式,則f[x]是偶函式。
5、奇函式與偶函式的定義域必須關於原點對稱。
3樓:匿名使用者
看定義域是否對稱,
觀式子,
看影象,
代數方法
4樓:木華黎
判斷較複雜函式的奇偶性
如何判斷函式的奇偶性步驟及方法
5樓:匿名使用者
一般地,如果對於函式f(x)的定義域內任意一個x,都有f(-x)=f(x),那麼函式f(x)就叫偶函式。
一般地,如果對於函式f(x)的定義域內任意一個x,都有f(-x)=-f(x),那麼函式f(x)就叫奇函式。
奇函式在其對稱區間[a,b]和[-b,-a]上具有相同的單調性,即已知是奇函式,它在區間[a,b]上是增函式(減函式),則在區間[-b,-a]上也是增函式(減函式);偶函式在其對稱區間[a,b]和[-b,-a]上具有相反的單調性,即已知是偶函式且在區間[a,b]上是增函式(減函式),則在區間[-b,-a]上是減函式(增函式)。但由單調性不能倒推其奇偶性。驗證奇偶性的前提要求函式的定義域必須關於原點對稱。
6樓:匿名使用者
第一步,判斷定義域是否對稱,否為非奇非偶。第二步,定義域對稱,①f(-x)=f(x)偶函式,②f(-x)=-f(x)奇函式③不滿足以上兩種情況,非奇非偶
7樓:abc高分高能
如何判斷函式的奇偶性
如何判斷一個函式的奇偶性 一共有幾種方法
8樓:宿孝公雁
一般地,對於函式
f(x)
(1)如果對於函式定義域內的任意一個x,都有f(-x)=-f(x),那麼函式f(x)就叫做奇函式。
(2)如果對於函式定義域內的任意一個x,都有f(-x)=f(x),那麼函式f(x)就叫做偶函式。
(3)如果對於函式定義域內的任意一個x,f(-x)=-f(x)與f(-x)=f(x)同時成立,那麼函式f(x)既是奇函式又是偶函式,稱為既奇又偶函式。
(4)如果對於函式定義域內的任意一個x,f(-x)=-f(x)或f(-x)=f(x)都不能成立,那麼函式f(x)既不是奇函式又不是偶函式,稱為非奇非偶函式。
說明:①奇、偶性是函式的整體性質,對整個定義域而言
②奇、偶函式的定義域一定關於原點對稱,如果一個函式的定義域不關於原點對稱,則這個函式一定不是奇(或偶)函式。
(分析:判斷函式的奇偶性,首先是檢驗其定義域是否關於原點對稱,然後再嚴格按照奇、偶性的定義經過化簡、整理、再與f(x)比較得出結論)
9樓:驚鴻一劍飄
1、奇函式、偶函式的定義中,首先函式定義域d關於原點對稱。它們的影象特點是:奇函式的影象關於原點對稱,偶函式的影象關於x軸對稱。
即f(-x)=-f(x)為奇函式,f(-x)=f(x)為偶函式
2、判斷函式的奇偶性大致有下列二種方法:
(1)用奇、偶函式的定義,主要考察f(-x)是否與-f(x) ,f(x) ,相等。
(2)利用一些已知函式的奇偶性及下列準則:兩個奇函式的代數和是奇函式;兩個偶函式的代數和是偶函式;奇函式與偶函式的和既非奇函式,也非偶函式;兩個奇函式的乘積是偶函式;兩個偶函式的乘積是偶函式;奇函式與偶函式的乘積是奇函式。
判斷函式奇偶性的幾種方法
10樓:yzwb我愛我家
函式的奇偶
抄性的判斷應從兩方面來bai進行,一是看du函式的定義域是否zhi關於原點對稱(這是判斷奇dao
偶性的必要性)二是看f(x)與f(-x)的關係。判斷方法有以下三種:
定義:如果對於函式y=f(x)的定義域a內的任意一個值x,都有f(-x)=-f(x)則這個涵數叫做奇函式f(-x)=f(x) 則這個函式叫做偶函式
11樓:華全動力集團
判斷bai
函式奇偶du性的方法:
zhidao1、f(x)=f(-x)為偶函版數2、f(x)=-f(-x)為奇函式
3、偶函式的圖象關權於y軸對稱
4、奇函式的圖象關於原點對稱
注意:1、兩者成立的前提:他們的定義域關於原點對稱,如[-2,2],(-10,10)對於奇函式而言,有f(0)=0
2、如需證明,則需用第一種方法證明f(x)=f(-x)或 f(x)=-f(-x) (並且定義域關於原點對稱)
12樓:匿名使用者
最基本的方法
當定義域關於y軸對稱式,驗證
f(x)=f(-x),偶函式
f(x)=-f(-x),奇函式。
判斷函式奇偶性的方法有哪些?
13樓:匿名使用者
判斷函式奇偶性的一般步驟:1)、看函式的定義域是否關於原點對稱,若不對稱,則得出結論:該函式無奇偶性。
若定義域對稱,則2)、計算f(-a),若等於f(a),則函式是偶函式;若等於-f(a),則函式是奇函式。若兩者都不滿足,則函式既不是奇函式也不是偶函式。注意:
若可以作出函式圖象的,直接觀察圖象是否關於y軸對稱或者關於原點對稱。感想:高一打基礎很關鍵,你的問題很好,加油努力哦~
14樓:緱雅靜劉佳
奇函式:f(x)
=-f(-x)
偶函式:f(x)
=f(-x)
判斷一個函式的奇偶性,只需要把函式表示式裡面的x換成-x,然後看最後化簡的結果滿不滿足上面的式子。
比如判斷正弦函式sin(x)的奇偶性,有:
f(x)=sin(x)
把x換成-x有:
f(-x)=sin(-x)=
-sin(x)=
-f(x)
於是有f(x)
=-f(-x),因此它是奇函式。其他的函式也可以用類似的方法判別,如果得不出這兩個關係中的任何一個,那該函式就是非奇非偶了。
函式的奇偶性有哪些判斷方法
15樓:study傳說
定義法做差法
影象法列表法
16樓:經潔玉慕若
首先看定義域是否關於原點對稱,如果不關於原點對稱,則是非奇非偶。函式的奇偶性根據定義判斷就可以了。
f(-x)=f(x)就是偶函式
f(-x)=-f(x)就是奇函式。
怎麼判斷函式奇偶性,判斷函式奇偶性最好的方法
將 x代入函式計算f x 看f x 得到的結果是否等於f x 或 f x 前者為偶函式,後者為奇函式 另一種可以直接觀察 先分解函式為常見的一般函式,比如多項式x n,三角函式,判斷奇偶性 根據分解的函式之間的運演算法則判斷,一般只有三種種f x g x f x g x f g x 除法或減法可以變...
判斷函式奇偶性,判斷函式奇偶性的幾種方法
首先這個函式的定義域是r 這一步很關鍵呀!沒有他就是不行的!注意哦!f x 根號 1 x 2 x 1 根號 1 x 2 x 1 根號 1 x 2 x 1 根號 1 x 2 x 1 根號 1 x 2 x 1 根號 1 x 2 x 1 2 2x 1 x 所以有 f x f x 所以f x 是奇函式 這種...
判斷函式的奇偶性判斷一個函式的奇偶性?
函式為奇函式,如下根據定義以及對數函式的性質望採納 奇函式。求f x 因為根號內的x是平方,所以符號不變,根號外的x會變成 x,然後利用平方差公式,分母1和分子同時乘以兩個式子的差,也就是 x和根號的差,可以得到求對數的冪的倒數,利用倒數為原數的 1次冪,再利用對數的求對數的冪的指數可以寫在對數前求...