1樓:雪劍
首先這個函式的定義域是r
這一步很關鍵呀!沒有他就是不行的!注意哦!
f(x)=[根號(1+x^2)+x-1]/[根號(1+x^2)+x+1]
=[根號(1+x^2)+x-1)(根號(1+x^2)-(x+1)]/[(根號(1+x^2)+x+1)*(根號(1+x^2)-(x+1)]
=2/(-2x)
=-1/x
所以有:
f(x)=-f(-x)
所以f(x)是奇函式》
-----
這種題目關鍵是化簡的部分,只要認真,應該沒問題的祝你學習進步!
2樓:我不是他舅
先分母有理化
f(x)=[根號(1+x^2)+x-1][根號(1+x^2)-x-1]/[根號(1+x^2)+x+1][根號(1+x^2)-x-1]
分子=(1+x^2)+(x-1-x-1)*√(1+x^2)-(x-1)(x+1)
=(x^2+1-x^2+1)-2√(1+x^2)=2-2√(1+x^2)
分母=(1+x^2)-(x+1)^2
=-2x
所以f(x)=[2-2√(1+x^2)]/(-2x)=[√(1+x^2)-1]/x
f(-x)分子不變,分母是-x
所以f(-x)=-f(x)
是奇函式
判斷函式奇偶性的幾種方法
3樓:yzwb我愛我家
函式的奇偶
抄性的判斷應從兩方面來bai進行,一是看du函式的定義域是否zhi關於原點對稱(這是判斷奇dao
偶性的必要性)二是看f(x)與f(-x)的關係。判斷方法有以下三種:
定義:如果對於函式y=f(x)的定義域a內的任意一個值x,都有f(-x)=-f(x)則這個涵數叫做奇函式f(-x)=f(x) 則這個函式叫做偶函式
4樓:華全動力集團
判斷bai
函式奇偶du性的方法:
zhidao1、f(x)=f(-x)為偶函版數2、f(x)=-f(-x)為奇函式
3、偶函式的圖象關權於y軸對稱
4、奇函式的圖象關於原點對稱
注意:1、兩者成立的前提:他們的定義域關於原點對稱,如[-2,2],(-10,10)對於奇函式而言,有f(0)=0
2、如需證明,則需用第一種方法證明f(x)=f(-x)或 f(x)=-f(-x) (並且定義域關於原點對稱)
5樓:匿名使用者
最基本的方法
當定義域關於y軸對稱式,驗證
f(x)=f(-x),偶函式
f(x)=-f(-x),奇函式。
怎麼判斷函式的奇偶性
6樓:518姚峰峰
先看定義域是否關於原點對稱
如果不是關於原點對稱,則函式沒有奇偶性
若定義域關於原點對稱
則f(-x)=f(x),f(x)是偶函式
f(-x)=-f(x),f(x)是奇函式
具體方法:
1,定義法.①定義域是否關於原點對稱,對稱是奇偶函式的前提條件②f(-x)是否等於±f(x).
2,圖象法.①圖象關於原點中心對稱是奇函式②圖象關於y軸對稱是偶函式.
3,性質法.①兩個奇函式的和仍是奇函式②兩個偶函式的和仍是偶函式③兩個奇函式的積是偶函式④兩個偶函式的積是偶函式⑤一個奇函式和一個偶函式的積是奇函式.
希望幫到你 望採納 謝謝 加油
7樓:老黃的分享空間
奇函式。求f(-x),因為根號內的x是平方,所以符號不變,根號外的x會變成-x,然後利用平方差公式,分母1和分子同時乘以兩個式子的差,也就是-x和根號的差,可以得到求對數的冪的倒數,利用倒數為原數的-1次冪,再利用對數的求對數的冪的指數可以寫在對數前求積,就可以得到-f(x).
f(-x)=-f(x),證明是奇函式.
8樓:匿名使用者
判斷f(x)和f(-x)的關係
想等是偶函式,相反是奇函式,否則就是非奇非偶。
9樓:廖山穆嘉年
一般地,對於函式f(x)
⑴如果對於函式f(x)定義域內的任意一個x,都有f(x)=f(-x)或f(x)/f(-x)=1那麼函式f(x)就叫做偶函式。關於y軸對稱,f(-x)=f(x)。
⑵如果對於函式f(x)定義域內的任意一個x,都有f(-x)=-f(x)或f(x)/f(-x)=-1,那麼函式f(x)就叫做奇函式。關於原點對稱,-f(x)=f(-x)。
⑶如果對於函式定義域內的任意一個x,都有f(x)=f(-x)和f(-x)=-f(x),(x∈r,且r關於原點對稱.)那麼函式f(x)既是奇函式又是偶函式,稱為既奇又偶函式。
⑷如果對於函式定義域內的存在一個a,使得f(a)≠f(-a),存在一個b,使得f(-b)≠-f(b),那麼函式f(x)既不是奇函式又不是偶函式,稱為非奇非偶函式。
定義域互為相反數,定義域必須關於原點對稱
特殊的,f(x)=0既是奇函式,又是偶函式。
說明:①奇、偶性是函式的整體性質,對整個定義域而言。
②奇、偶函式的定義域一定關於原點對稱,如果一個函式的定義域不關於原點對稱,則這個函式一定不具有奇偶性。
(分析:判斷函式的奇偶性,首先是檢驗其定義域是否關於原點對稱,然後再嚴格按照奇、偶性的定義經過化簡、整理、再與f(x)比較得出結論)
③判斷或證明函式是否具有奇偶性的根據是定義。
④如果一個奇函式f(x)在x=0處有意義,則這個函式在x=0處的函式值一定為0。並且關於原點對稱。
⑤如果函式定義域不關於原點對稱或不符合奇函式、偶函式的條件則叫做非奇非偶函式。例如f(x)=x³【-∞,-2】或【0,+∞】(定義域不關於原點對稱)
⑥如果函式既符合奇函式又符合偶函式,則叫做既奇又偶函式。例如f(x)=0
注:任意常函式(定義域關於原點對稱)均為偶函式,只有f(x)=0是既奇又偶函式
10樓:蒼龍龍龍
函式是指一段在一起的、可以做某一件事兒的程式。也叫做子程式、(oop中)方法。
一個較大的程式一般應分為若干個程式塊,每一個模組用來實現一個特定的功能。所有的高階語言中都有子程式這個概念,用子程式實現模組的功能。在c語言中,子程式的作用是由一個主函式和若干個函式構成。
由主函式呼叫其他函式,其他函式也可以互相呼叫。同一個函式可以被一個或多個函式呼叫任意多次。
在程式設計中,常將一些常用的功能模組編寫成函式,放在函式庫中供公共選用。要善於利用函式,以減少重複編寫程式段的工作量。
函式分為全域性函式、全域性靜態函式;在類中還可以定義建構函式、解構函式、拷貝建構函式、成員函式、友元函式、運算子過載函式、行內函數等。
判斷函式奇偶性最好的方法
11樓:angela韓雪倩
判定奇偶性四法:
(1)定義法
用定義來判斷函式奇偶性,是主要方法 . 首先求出函式的定義域,觀察驗證是否關於原點對稱. 其次化簡函式式,然後計算f(-x),最後根據f(-x)與f(x)之間的關係,確定f(x)的奇偶性.
(2)用必要條件.
具有奇偶性函式的定義域必關於原點對稱,這是函式具有奇偶性的必要條件.
例如,函式y=的定義域(-∞,1)∪(1,+∞),定義域關於原點不對稱,所以這個函式不具有奇偶性.
(3)用對稱性.
若f(x)的圖象關於原點對稱,則 f(x)是奇函式.
若f(x)的圖象關於y軸對稱,則 f(x)是偶函式.
(4)用函式運算.
如果f(x)、g(x)是定義在d上的奇函式,那麼在d上,f(x)+g(x)是奇函式,f(x)•g(x)是偶函式. 簡單地,「奇+奇=奇,奇×奇=偶」.
類似地,「偶±偶=偶,偶×偶=偶,奇×偶=奇」.
擴充套件資料:
奇函式在其對稱區間[a,b]和[-b,-a]上具有相同的單調性,即已知是奇函式,它在區間[a,b]上是增函式(減函式),則在區間[-b,-a]上也是增函式(減函式);偶函式在其對稱區間[a,b]和[-b,-a]上具有相反的單調性。
即已知是偶函式且在區間[a,b]上是增函式(減函式),則在區間[-b,-a]上是減函式(增函式)。但由單調性不能倒導其奇偶性。驗證奇偶性的前提要求函式的定義域必須關於原點對稱。
說明:①奇、偶性是函式的整體性質,對整個定義域而言。
②奇、偶函式的定義域一定關於原點對稱,如果一個函式的定義域不關於原點對稱,則這個函式一定不具有奇偶性。
③判斷或證明函式是否具有奇偶性的根據是定義。
偶函式:若對於定義域內的任意一個x,都有f(-x)=f(x),那麼f(x)稱為偶函式。
奇函式:若對於定義域內的任意一個x,都有f(-x)=-f(x),那麼f(x)稱為奇函式。
定理奇函式的影象關於原點成中心對稱圖表,偶函式的圖象關於y軸成軸對稱圖形。
f(x)為奇函式《==》f(x)的影象關於原點對稱
點(x,y)→(-x,-y)
奇函式在某一區間上單調遞增,則在它的對稱區間上也是單調遞增。
偶函式在某一區間上單調遞增,則在它的對稱區間上單調遞減。
性質:1、大部分偶函式沒有反函式(因為大部分偶函式在整個定義域內非單調函式)。
2、偶函式在定義域內關於y軸對稱的兩個區間上單調性相反,奇函式在定義域內關於原點對稱的兩個區間上單調性相同。
3、奇±奇=奇(可能為既奇又偶函式) 偶±偶=偶(可能為既奇又偶函式) 奇x奇=偶 偶x偶=偶 奇x偶=奇(兩函式定義域要關於原點對稱).
4、對於f(x)=f[g(x)]:
若g(x)是偶函式且f(x)是偶函式,則f[x]是偶函式。
若g(x) 是偶函式且f(x)是奇函式,則f[x]是偶函式。
若g(x)是奇函式且f(x)是奇函式,則f[x]是奇函式。
若g(x)是奇函式且f(x)是偶函式,則f[x]是偶函式。
5、奇函式與偶函式的定義域必須關於原點對稱。
12樓:匿名使用者
看定義域是否對稱,
觀式子,
看影象,
代數方法
13樓:木華黎
判斷較複雜函式的奇偶性
怎麼判斷函式的奇偶性?
14樓:鈦合金和廣泛的
。。。。這是個概念問題。首先奇偶性是對於函式整體來說的,不是哪個區域性的特性;其次重點來了:
奇函式:f(x)=-f(-x)
∴①若定義域包括原點,則必有f(0)=0
②若定義域不包括原點,就。。就沒什麼特別
偶函式:f(x)=f(-x)
簡而言之 ,奇函式影象關於原點對稱,而偶函式影象關於y軸對稱。
所以由概念可知,判定奇偶性,
先看定義域必須得關於0對稱,如(2,8)或(7,7]就是非奇非偶然後再由以上奇偶函式性質判定即可。把x,-x分別代入同一個函式,看符合哪個性質(取特值更快)。
綜上,一眼b,大概就是靠概念的題。(別說你a.c函式不認識。。。)
15樓:匿名使用者
只有b(y=x^2)是偶函式。
對於函式 y=f(x),如果滿足f(-x)=f(x),是偶函式;
如果滿足f(-x)=-f(x),是奇函式。
如何判斷這個函式的奇偶性?判斷函式的奇偶性有哪幾種方法
非奇非偶,舉例f 2 f 2 f 2 判斷函式奇偶性最好的方法 判定奇偶性四法 1 定義法 用定義來判斷函式奇偶性,是主要方法 首先求出函式的定義域,觀察驗證是否關於原點對稱.其次化簡函式式,然後計算f x 最後根據f x 與f x 之間的關係,確定f x 的奇偶性.2 用必要條件.具有奇偶性函式的...
怎麼判斷函式奇偶性,判斷函式奇偶性最好的方法
將 x代入函式計算f x 看f x 得到的結果是否等於f x 或 f x 前者為偶函式,後者為奇函式 另一種可以直接觀察 先分解函式為常見的一般函式,比如多項式x n,三角函式,判斷奇偶性 根據分解的函式之間的運演算法則判斷,一般只有三種種f x g x f x g x f g x 除法或減法可以變...
判斷函式的奇偶性判斷一個函式的奇偶性?
函式為奇函式,如下根據定義以及對數函式的性質望採納 奇函式。求f x 因為根號內的x是平方,所以符號不變,根號外的x會變成 x,然後利用平方差公式,分母1和分子同時乘以兩個式子的差,也就是 x和根號的差,可以得到求對數的冪的倒數,利用倒數為原數的 1次冪,再利用對數的求對數的冪的指數可以寫在對數前求...