1樓:最愛優優
三角函式值表:
數關係tanα ·cotα=1
sinα ·cscα=1
cosα ·secα=1
商的關係
tanα=sinα/cosα cotα=cosα/sinα
正弦二倍角公式
sin2α = 2cosαsinα
推導:sin2a=sin(a+a)=sinacosa+cosasina=2sinacosa
拓展公式:
sin2a=2sinacosa=2tanacos2a=2tana/[1+tan2a]
餘弦二倍角公式
餘弦二倍角公式有三組表示形式,三組形式等價:
1.cos2a=cos2a-sin2a=[1-tan2a]/[1+tan2a]
2.cos2a=1-2sin2a
3.cos2a=2cos2a-1
推導:cos2a=cos(a+a)=cosacosa-sinasina=cos^2a-sin^2a=2cos^2a-1=1-2sin^2a
正切二倍角公式
tan2α=2tanα/[1-tan2α]
推導:tan2a=tan(a+a)=(tana+tana)/(1-tanatana)=2tana/[1-tan2a]
擴充套件資料:
一、以下關係,函式名不變,符號看象限
sin(2kπ+α)=sinα
cos(2kπ+α)=cosα
tan(2kπ+α)=tanα
cot(2kπ+α)=cotα
sin(π+α)=-sinα
cos(π+α)=-cosα
tan(π+α)=tanα
cot(π+α)=cotα
sin(π-α)=sinα
cos(π-α)=-cosα
tan(π-α)=-tanα
cot(π-α)=-cotα
sin(2π-α)=-sinα
cos(2π-α)=cosα
tan(2π-α)=-tanα
cot(2π-α)=-cotα
二、兩角和公式
cot(a+b)=(cotacotb-1)/(cotb+cota) cot(a-b)=(cotacotb+1)/(cotb-cota)
tan(a+b)=(tana+tanb)/(1-tanatanb) tan(a-b)=(tana-tanb)/(1+tanatanb)
cos(a+b)=cosacosb-sinasinb cos(a-b)=cosacosb+sinasinb
sin(a+b)=sinacosb+cosasinb sin(a-b)=sinacosb-sinbcosa
三、積化和差公式
sinαsinβ = [cos(α-β)-cos(α+β)] /2
sinαcosβ = [sin(α+β)+sin(α-β)]/2
cosαsinβ = [sin(α+β)-sin(α-β)]/2
2樓:捷遠扈珍
常用的是
sinx^2+cosx^2=1
tanx^2-1=1/cosx^2
tanx*cotx=1
同角三角函式的基本關係式
倒數關係:
商的關係:
平方關係:
tanα
·cotα=1
sinα
·cscα=1
cosα
·secα=1
1+tan2α=sec2α
1+cot2α=csc2α
誘導公式
sin(-α)=-sinα
cos(-α)=cosα
tan(-α)=-tanα
cot(-α)=-cotα
sin(π/2-α)=cosα
cos(π/2-α)=sinα
tan(π/2-α)=cotα
cot(π/2-α)=tanα
sin(π/2+α)=cosα
cos(π/2+α)=-sinα
tan(π/2+α)=-cotα
cot(π/2+α)=-tanα
sin(π-α)=sinα
cos(π-α)=-cosα
tan(π-α)=-tanα
cot(π-α)=-cotα
sin(π+α)=-sinα
cos(π+α)=-cosα
tan(π+α)=tanα
cot(π+α)=cotα
sin(3π/2-α)=-cosα
cos(3π/2-α)=-sinα
tan(3π/2-α)=cotα
cot(3π/2-α)=tanα
sin(3π/2+α)=-cosα
cos(3π/2+α)=sinα
tan(3π/2+α)=-cotα
cot(3π/2+α)=-tanα
sin(2π-α)=-sinα
cos(2π-α)=cosα
tan(2π-α)=-tanα
cot(2π-α)=-cotα
sin(2kπ+α)=sinα
cos(2kπ+α)=cosα
tan(2kπ+α)=tanα
cot(2kπ+α)=cotα
(其中k∈z)
兩角和與差的三角函式公式
萬能公式
sin(α+β)=sinαcosβ+cosαsinβsin(α-β)=sinαcosβ-cosαsinβcos(α+β)=cosαcosβ-sinαsinβcos(α-β)=cosαcosβ+sinαsinβtanα+tanβ
tan(α+β)=——————
1-tanα
·tanβ
tanα-tanβ
tan(α-β)=——————
1+tanα
·tanβ
2tan(α/2)
sinα=——————
1+tan2(α/2)
1-tan2(α/2)
cosα=——————
1+tan2(α/2)
2tan(α/2)
tanα=——————
1-tan2(α/2)
半形的正弦、餘弦和正切公式
三角函式的降冪公式
二倍角的正弦、餘弦和正切公式
三倍角的正弦、餘弦和正切公式
sin2α=2sinαcosα
cos2α=cos2α-sin2α=2cos2α-1=1-2sin2α
2tanα
tan2α=—————
1-tan2α
sin3α=3sinα-4sin3α
cos3α=4cos3α-3cosα
3tanα-tan3α
tan3α=——————
1-3tan2α
三角函式的和差化積公式
三角函式的積化和差公式
α+βα-β
sinα+sinβ=2sin—--·cos—-—22α+βα-β
sinα-sinβ=2cos—--·sin—-—22α+βα-β
cosα+cosβ=2cos—--·cos—-—22α+βα-β
cosα-cosβ=-2sin—--·sin—-—221sinα
·cosβ=-[sin(α+β)+sin(α-β)]21cosα
·sinβ=-[sin(α+β)-sin(α-β)]21cosα
·cosβ=-[cos(α+β)+cos(α-β)]21sinα
·sinβ=-
-[cos(α+β)-cos(α-β)]
2化asinα
±bcosα為一個角的一個三角函式的形式(輔助角的三角函式的公式)
三角函式基本關係式
3樓:匿名使用者
兩角和公式
sin(a+b)=sinacosb+cosasinb
sin(a-b)=sinacosb-sinbcosa
高等數學的所有三角函式關係式
4樓:匿名使用者
-----------------------三角函式 積化和差
和差化積公式
記不住就自己推,用兩角和差的正餘弦:
cos(a+b)=cosacosb-sinasinb
cos(a-b)=cosacosb+sinasinb
這兩式相加或相減,可以得到2組積化和差:
相加:cosacosb=[cos(a+b)+cos(a-b)]/2
相減:sinasinb=-[cos(a+b)-cos(a-b)]/2
sin(a+b)=sinacosb+sinbcosa
sin(a-b)=sinacosb-sinbcosa
這兩式相加或相減,可以得到2組積化和差:
相加:sinacosb=[sin(a+b)+sin(a-b)]/2
相減:sinbcosa=[sin(a+b)-sin(a-b)]/2
三角函式公式
兩角和公式
sin(a+b) = sinacosb+cosasinb
sin(a-b) = sinacosb-cosasinb
cos(a+b) = cosacosb-sinasinb
cos(a-b) = cosacosb+sinasinb
tan(a+b) =
tan(a-b) =
cot(a+b) =
cot(a-b) =
倍角公式
tan2a =
sin2a=2sina•cosa
cos2a = cos2a-sin2a=2cos2a-1=1-2sin2a
三倍角公式
sin3a = 3sina-4(sina)3
cos3a = 4(cosa)3-3cosa
tan3a = tana·tan(+a)·tan(-a)
半形公式
sin()=
cos()=
tan()=
cot()=
tan()==
和差化積
sina+sinb=2sincos
sina-sinb=2cossin
cosa+cosb = 2coscos
cosa-cosb = -2sinsin
tana+tanb=
積化和差
sinasinb = -[cos(a+b)-cos(a-b)]
cosacosb = [cos(a+b)+cos(a-b)]
sinacosb = [sin(a+b)+sin(a-b)]
cosasinb = [sin(a+b)-sin(a-b)]
誘導公式
sin(-a) = -sina
cos(-a) = cosa
sin(-a) = cosa
cos(-a) = sina
sin(+a) = cosa
cos(+a) = -sina
sin(π-a) = sina
cos(π-a) = -cosa
sin(π+a) = -sina
cos(π+a) = -cosa
tga=tana =
萬能公式
sina=
cosa=
tana=
其它公式
a•sina+b•cosa=×sin(a+c) [其中tanc=]
a•sin(a)-b•cos(a) = ×cos(a-c) [其中tan(c)=]
1+sin(a) =(sin+cos)2
1-sin(a) = (sin-cos)2
其他非重點三角函式
csc(a) =
sec(a) =
雙曲函式
sinh(a)=
cosh(a)=
tg h(a)=
公式一:
設α為任意角,終邊相同的角的同一三角函式的值相等:
sin(2kπ+α)= sinα
cos(2kπ+α)= cosα
tan(2kπ+α)= tanα
cot(2kπ+α)= cotα
公式二:
設α為任意角,π+α的三角函式值與α的三角函式值之間的關係:
sin(π+α)= -sinα
cos(π+α)= -cosα
tan(π+α)= tanα
cot(π+α)= cotα
公式三:
任意角α與 -α的三角函式值之間的關係:
sin(-α)= -sinα
cos(-α)= cosα
tan(-α)= -tanα
cot(-α)= -cotα
公式四:
利用公式二和公式三可以得到π-α與α的三角函式值之間的關係:
sin(π-α)= sinα
cos(π-α)= -cosα
tan(π-α)= -tanα
cot(π-α)= -cotα
公式五:
利用公式-和公式三可以得到2π-α與α的三角函式值之間的關係:
sin(2π-α)= -sinα
cos(2π-α)= cosα
tan(2π-α)= -tanα
cot(2π-α)= -cotα
公式六:
±α及±α與α的三角函式值之間的關係:
sin(+α)= cosα
cos(+α)= -sinα
tan(+α)= -cotα
cot(+α)= -tanα
sin(-α)= cosα
cos(-α)= sinα
tan(-α)= cotα
cot(-α)= tanα
sin(+α)= -cosα
cos(+α)= sinα
tan(+α)= -cotα
cot(+α)= -tanα
sin(-α)= -cosα
cos(-α)= -sinα
tan(-α)= cotα
cot(-α)= tanα
(以上k∈z)
三角函式公式
兩角和公式 sin(a+b)=sinacosb+cosasinb sin(a-b)=sinacosb-sinbcosa
cos(a+b)=cosacosb-sinasinb cos(a-b)=cosacosb+sinasinb
tan(a+b)=(tana+tanb)/(1-tanatanb) tan(a-b)=(tana-tanb)/(1+tanatanb)
ctg(a+b)=(ctgactgb-1)/(ctgb+ctga) ctg(a-b)=(ctgactgb+1)/(ctgb-ctga)
倍角公式 tan2a=2tana/(1-tan2a) ctg2a=(ctg2a-1)/2ctga
cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a
半形公式 sin(a/2)=√((1-cosa)/2) sin(a/2)=-√((1-cosa)/2)
cos(a/2)=√((1+cosa)/2) cos(a/2)=-√((1+cosa)/2)
tan(a/2)=√((1-cosa)/((1+cosa)) tan(a/2)=-√((1-cosa)/((1+cosa))
ctg(a/2)=√((1+cosa)/((1-cosa)) ctg(a/2)=-√((1+cosa)/((1-cosa))
和差化積 2sinacosb=sin(a+b)+sin(a-b) 2cosasinb=sin(a+b)-sin(a-b)
2cosacosb=cos(a+b)-sin(a-b) -2sinasinb=cos(a+b)-cos(a-b)
sina+sinb=2sin((a+b)/2)cos((a-b)/2 cosa+cosb=2cos((a+b)/2)sin((a-b)/2)
tana+tanb=sin(a+b)/cosacosb tana-tanb=sin(a-b)/cosacosb
ctga+ctgbsin(a+b)/sinasinb -ctga+ctgbsin(a+b)/sinasinb
同角三角函式關係式是什麼,同角三角函式關係式有哪些
常用的是 sinx 2 cosx 2 1 tanx 2 1 1 cosx 2 tanx cotx 1 倒數關係 商的關係 平方關係 tan cot 1 sin csc 1 cos sec 1 1 tan2 sec2 1 cot2 csc2 誘導公式 sin sin cos cos tan tan c...
反三角函式,三角函式的反函式,還有反三角函式的反函式三者之間的關係,最好能舉例說明,謝謝
例1,三角函式 tana 2,反三角函式 arctan a 3,三角函式的反函式 tana a,反函式a arctana 4,反三角函式的反函式 tan arctan a a 反三角函式是三角函式的反函式嗎?是在特定範圍 內,反三角函式與三角函式 在 互為反函式。真正三角函式沒有反函式三角函式定定義...
三角函式問題,三角函式問題?
初中階段的所說的銳角三角函式是銳角的正弦 餘弦 正切 餘切四種函式的統稱.2 銳角三角函式表示的是兩個正數的比值,因而,銳角三角函式沒有單位.3 理清銳角三角函式中的自變數與因變數 對於上述四種函式來說,以 a為例,自變數都是銳角a,因變數就是銳角a的四種三角函式.這說明,當銳角a的大小不變時,銳角...