數學三角函式,高中數學 三角函式問題

2022-02-18 09:32:10 字數 8141 閱讀 7504

1樓:涼笙動漫

三角函式是數學中常見的一類關於角度的函式。也可以說以角度為自變數,角度對應任意兩邊的比值為因變數的函式叫三角函式,三角函式將直角三角形的內角和它的兩個邊長度的比值相關聯,也可以等價地用與單位圓有關的各種線段的長度來定義。三角函式在研究三角形和圓等幾何形狀的性質時有重要作用,也是研究週期性現象的基礎數學工具。

在數學分析中,三角函式也被定義為無窮級限或特定微分方程的解,允許它們的取值擴充套件到任意實數值,甚至是複數值。

常見的三角函式包括正弦函式、餘弦函式和正切函式。在航海學、測繪學、工程學等其他學科中,還會用到如餘切函式、正割函式、餘割函式、正矢函式、餘矢函式、半正矢函式、半餘矢函式等其他的三角函式。不同的三角函式之間的關係可以通過幾何直觀或者計算得出,稱為三角恆等式。

三角函式一般用於計算三角形中未知長度的邊和未知的角度,在導航、工程學以及物理學方面都有廣泛的用途。另外,以三角函式為模版,可以定義一類相似的函式,叫做雙曲函式。常見的雙曲函式也被稱為雙曲正弦函式、雙曲餘弦函式等等。

三角函式(也叫做圓函式)是角的函式;它們在研究三角形和建模週期現象和許多其他應用中是很重要的。三角函式通常定義為包含這個角的直角三角形的兩個邊的比率,也可以等價的定義為單位圓上的各種線段的長度。更現代的定義把它們表達為無窮級數或特定微分方程的解,允許它們擴充套件到任意正數和負數值,甚至是複數值。

高中數學!三角函式問題!

2樓:玉w頭說教育

這道題先根據θ+π/4的正弦值為正和θ是第四象限的角來判斷θ+π/4的範圍,再根據θ+π/4的範圍得出θ-π/4的範圍。

然後再根據三角函式恆等變換將θ+π/4的正弦轉變成角θ-π/4的餘弦,最後根據sin²(θ-π/4)+cos²(θ-π/4)=1求出sin(θ-π/4)的值。

再根據tan(θ-π/4)=sin(θ-π/4)/cos(θ-π/4)得出tan(θ-π/4)的值。

具體做法如圖:

希望對你有所幫助!

3樓:楠氏族

sin(θ+π/4)=5/3>1,題目有問題,sin應該小於1。

4樓:樓天路

同學你好,計算過程如下圖所示,希望我的回答對你有所幫助

數學.三角函式~判斷三角形的形狀.

5樓:響中

是等腰三角形,利用正玄定理的話就可以得出a的餘弦比上b的餘弦等於a的正弦比上b正弦。用三角函式的公式就可以得出a減b的正弦等於零

6樓:

你好,等下我做了發給你哈

初三數學三角函式

7樓:勤昆迴心諾

當角a確定時。它的三角函式值是確定的。因為同角的三角函式值相等。如我只知道角a等於30度。那麼我就能確定它的正弦值為2分之1。和邊長沒有關係。

8樓:三城補橋

初中只是學習了一些特殊角的三角比(30°,60°等),高中正式學習所有三角比,三角恆等式,正弦函式、餘弦函式、正切函式、反三角函式等

9樓:星驪穎

回答勾股定理:直角三角形兩直角邊a、b的平方和等於斜邊c的平方

在rt△abc中,∠c為直角,則∠a的銳角三角函式為(∠a可換成∠b)

任意銳角的正弦值等於它的餘角的餘弦值;任意銳角的餘弦值等於它的餘角的正弦值。

任意銳角的正切值等於它的餘角的餘切值;任意銳角的餘切值等於它的餘角的正切值。

正弦、餘弦的增減性:當0°≤α≤90°時,sinα隨α的增大而增大,cosα隨α的增大而減小。

正切、餘切的增減性: 當0°<α<90°時,tanα隨α的增大而增大,cotα隨α的增大而減小。

初中三角函式倍角公式:

sin(2α)=2sinα·cosα

cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)

tan(2α)=2tanα/[1-tan^2(α)]

tan(2α)=2tanα/[1-tan^2(α)]

更多9條

10樓:路人__黎

過a作ad⊥y軸,垂足是d

過b作bc⊥x軸,垂足是c

令一次函式與x軸的交點是e,與y軸的交點是f由已知:e(-4,0),f(0,-4)

則oe=of=4

∵oe⊥of

∴△oef是等腰直角三角形

則∠oef=∠ofe=45º

∴∠bec=∠afd=45º

且∠afo=∠beo=135º

∵bc⊥x軸,ad⊥y軸

∴△bce和△adf都是等腰直角三角形

則be=√2bc,af=√2ad

∵∠aob=135º

∴∠obe+∠oaf=45º

∵∠foa+∠oaf=45º

∴∠obe=∠foa

∴△obe∽△aof

∴oe/af=be/of

則oe•of=af•be

∴4•4=√2ad•√2bc=2ad•bc則ad•bc=8

∵pa⊥x軸,pb⊥y軸且ad⊥y軸,bc⊥x軸∴ad是點p的橫座標,bc是點p的縱座標

∵點p在反比例函式y=k/x上

∴k=xy=ad•bc=8

初中數學三角函式公式

11樓:人設不能崩無限

關於初中三角函式公式如:

sin30°=1/2

sin45°=√2/2

sin60°=√3/2

cos30°=√3/2

cos45°=√2/2

cos60°=1/2

tan30°=√3/3

tan45°=1

tan60°=√3[1]

cot30°=√3

cot45°=1

cot60°=√3/3

12樓:匿名使用者

三角函式公式

正弦(sin):角α的對邊比上斜邊

餘弦(cos):角α的鄰邊比上斜邊

正切(tan):角α的對邊比上鄰邊

餘切(cot):角α的鄰邊比上對邊

正割(sec):角α的斜邊比上鄰邊

餘割(csc):角α的斜邊比上對邊

sin30°=1/2

sin45°=根號2/2

sin60°=根號3/2

cos30°=根號3/2

cos45°=根號2/2

cos60°=1/2

tan30°=根號3/3

tan45°=1

tan60°=根號3

13樓:餘起雲欒卿

直角三角形的三邊分別為x,y,z,z為斜邊,則有sina=x/z,cosa=y/z,

所以,sina平方+cosa平方就等於z的平方分之x的平方+z的平方分之y的平方,在直角三角形中的勾股定理有x的平方+y的平方等於z的平方,所以等效代換得sina平方+cosa平方=1就這樣

14樓:流星韻筠

函式名 正弦 餘弦 正切 餘切 正割 餘割

在平面直角座標系xoy中,從點o引出一條射線op,設旋轉角為θ,設op=r,p點的座標為(x,y)有

正弦函式 sinθ=y/r

餘弦函式 cosθ=x/r

正切函式 tanθ=y/x

餘切函式 cotθ=x/y

正割函式 secθ=r/x

餘割函式 cscθ=r/y

(斜邊為r,對邊為y,鄰邊為x。)

以及兩個不常用,已趨於被淘汰的函式:

正矢函式 versinθ =1-cosθ

餘矢函式 coversθ =1-sinθ

正弦(sin):角α的對邊比上斜邊

餘弦(cos):角α的鄰邊比上斜邊

正切(tan):角α的對邊比上鄰邊

餘切(cot):角α的鄰邊比上對邊

正割(sec):角α的斜邊比上鄰邊

餘割(csc):角α的斜邊比上對邊

同角三角函式間的基本關係式:

·平方關係:

sin^2(α)+cos^2(α)=1 cos^2a=(1+cos2a)/2

tan^2(α)+1=sec^2(α) sin^2a=(1-cos2a)/2

cot^2(α)+1=csc^2(α)

·積的關係:

sinα=tanα*cosα

cosα=cotα*sinα

tanα=sinα*secα

cotα=cosα*cscα

secα=tanα*cscα

cscα=secα*cotα

·倒數關係:

tanα·cotα=1

sinα·cscα=1

cosα·secα=1

直角三角形abc中,

角a的正弦值就等於角a的對邊比斜邊,

餘弦等於角a的鄰邊比斜邊

正切等於對邊比鄰邊,

·三角函式恆等變形公式

·兩角和與差的三角函式:

cos(α+β)=cosα·cosβ-sinα·sinβ

cos(α-β)=cosα·cosβ+sinα·sinβ

sin(α±β)=sinα·cosβ±cosα·sinβ

tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)

tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)

·三角和的三角函式:

sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ

cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ

tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)

·輔助角公式:

asinα+bcosα=(a^2+b^2)^(1/2)sin(α+t),其中

sint=b/(a^2+b^2)^(1/2)

cost=a/(a^2+b^2)^(1/2)

tant=b/a

asinα+bcosα=(a^2+b^2)^(1/2)cos(α-t),tant=a/b

·倍角公式:

sin(2α)=2sinα·cosα=2/(tanα+cotα)

cos(2α)=cos^(α)-sin^(α)=2cos^(α)-1=1-2sin^(α)

tan(2α)=2tanα/[1-tan^2(α)]

·三倍角公式:

sin(3α)=3sinα-4sin^3(α)

cos(3α)=4cos^3(α)-3cosα

·半形公式:

sin(α/2)=±√((1-cosα)/2)

cos(α/2)=±√((1+cosα)/2)

tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα

·降冪公式

sin^2(α)=(1-cos(2α))/2=versin(2α)/2

cos^2(α)=(1+cos(2α))/2=covers(2α)/2

tan^2(α)=(1-cos(2α))/(1+cos(2α))

·萬能公式:

sinα=2tan(α/2)/[1+tan^2(α/2)]

cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]

tanα=2tan(α/2)/[1-tan^2(α/2)]

·積化和差公式:

sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]

cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]

cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]

sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]

·和差化積公式:

sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]

sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]

cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]

cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]

·推導公式

tanα+cotα=2/sin2α

tanα-cotα=-2cot2α

1+cos2α=2cos^2α

1-cos2α=2sin^2α

1+sinα=(sinα/2+cosα/2)^2

·其他:

sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0

cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及

sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2

tanatanbtan(a+b)+tana+tanb-tan(a+b)=0

cosx+cos2x+...+cosnx= [sin(n+1)x+sinnx-sinx]/2sinx

證明:左邊=2sinx(cosx+cos2x+...+cosnx)/2sinx

=[sin2x-0+sin3x-sinx+sin4x-sin2x+...+ sinnx-sin(n-2)x+sin(n+1)x-sin(n-1)x]/2sinx (積化和差)

=[sin(n+1)x+sinnx-sinx]/2sinx=右邊

等式得證

sinx+sin2x+...+sinnx= - [cos(n+1)x+cosnx-cosx-1]/2sinx

證明:左邊=-2sinx[sinx+sin2x+...+sinnx]/(-2sinx)

=[cos2x-cos0+cos3x-cosx+...+cosnx-cos(n-2)x+cos(n+1)x-cos(n-1)x]/(-2sinx)

=- [cos(n+1)x+cosnx-cosx-1]/2sinx=右邊

等式得證

三角函式的誘導公式

公式一:

設α為任意角,終邊相同的角的同一三角函式的值相等:

sin(2kπ+α)=sinα

cos(2kπ+α)=cosα

tan(2kπ+α)=tanα

cot(2kπ+α)=cotα

公式二:

設α為任意角,π+α的三角函式值與α的三角函式值之間的關係:

sin(π+α)=-sinα

cos(π+α)=-cosα

tan(π+α)=tanα

cot(π+α)=cotα

公式三:

任意角α與 -α的三角函式值之間的關係:

sin(-α)=-sinα

cos(-α)=cosα

tan(-α)=-tanα

cot(-α)=-cotα

公式四:

利用公式二和公式三可以得到π-α與α的三角函式值之間的關係:

sin(π-α)=sinα

cos(π-α)=-cosα

tan(π-α)=-tanα

cot(π-α)=-cotα

公式五:

利用公式一和公式三可以得到2π-α與α的三角函式值之間的關係:

sin(2π-α)=-sinα

cos(2π-α)=cosα

tan(2π-α)=-tanα

cot(2π-α)=-cotα

公式六:

π/2±α及3π/2±α與α的三角函式值之間的關係:

sin(π/2+α)=cosα

cos(π/2+α)=-sinα

tan(π/2+α)=-cotα

cot(π/2+α)=-tanα

sin(π/2-α)=cosα

cos(π/2-α)=sinα

tan(π/2-α)=cotα

cot(π/2-α)=tanα

sin(3π/2+α)=-cosα

cos(3π/2+α)=sinα

tan(3π/2+α)=-cotα

cot(3π/2+α)=-tanα

sin(3π/2-α)=-cosα

cos(3π/2-α)=-sinα

tan(3π/2-α)=cotα

cot(3π/2-α)=tanα

(以上k∈z)

高中數學三角函式,高中數學三角函式(完整加分)

在 sinc 2 cosc 2 1 的左右兩邊同時除以 cosc 2 可得 tanc 2 1 1 cosc 2 由此得 tanc 2 捨去 2 因為 cosc 0 c 為銳角 因此由 tanb tan 180 a c tan a c tana tanc 1 tana tanc 1 得 b 45 易得...

數學高三三角函式問題,高中數學三角函式,好難,怎麼解決

要先理解,再多記,多練,如果實在自己還不明白,就報個補習班吧!推薦睿凡教育 找個睿凡老師補習補習!其實主要就是公式,記住了就簡單多了 高考三角函式問題求解 我如果是你的語文老師,我會去跟你的數學老師鼓掌的,這個學生乾的漂亮 就是故意要拉低你的平均分,咋地 不服咬我?你這是計算出問題啦 可以用cos求...

高中數學題,三角函式

利用萬能公式,得到a b arcsin cos sinc sind 得到,當an 時,滿足a ka cosa b 2a,c a 3,d ka 這樣的例子是沒有的,因為k,a不可能同為一個數,否則該角度必定大於360,即在單位園內為復角 同樣也可以說,但不嚴謹,證明如上,說理如下 高中範圍內不可能。因...