1樓:昂明赤易夢
常用的是
sinx^2+cosx^2=1
tanx^2-1=1/cosx^2
tanx*cotx=1
倒數關係:
商的關係:
平方關係:
tanα
·cotα=1
sinα
·cscα=1
cosα
·secα=1
1+tan2α=sec2α
1+cot2α=csc2α
誘導公式
sin(-α)=-sinα
cos(-α)=cosα
tan(-α)=-tanα
cot(-α)=-cotα
sin(π/2-α)=cosα
cos(π/2-α)=sinα
tan(π/2-α)=cotα
cot(π/2-α)=tanα
sin(π/2+α)=cosα
cos(π/2+α)=-sinα
tan(π/2+α)=-cotα
cot(π/2+α)=-tanα
sin(π-α)=sinα
cos(π-α)=-cosα
tan(π-α)=-tanα
cot(π-α)=-cotα
sin(π+α)=-sinα
cos(π+α)=-cosα
tan(π+α)=tanα
cot(π+α)=cotα
sin(3π/2-α)=-cosα
cos(3π/2-α)=-sinα
tan(3π/2-α)=cotα
cot(3π/2-α)=tanα
sin(3π/2+α)=-cosα
cos(3π/2+α)=sinα
tan(3π/2+α)=-cotα
cot(3π/2+α)=-tanα
sin(2π-α)=-sinα
cos(2π-α)=cosα
tan(2π-α)=-tanα
cot(2π-α)=-cotα
sin(2kπ+α)=sinα
cos(2kπ+α)=cosα
tan(2kπ+α)=tanα
cot(2kπ+α)=cotα
(其中k∈z)
兩角和與差的三角函式公式
萬能公式
sin(α+β)=sinαcosβ+cosαsinβsin(α-β)=sinαcosβ-cosαsinβcos(α+β)=cosαcosβ-sinαsinβcos(α-β)=cosαcosβ+sinαsinβtanα+tanβ
tan(α+β)=------
1-tanα
·tanβ
tanα-tanβ
tan(α-β)=------
1+tanα
·tanβ
2tan(α/2)
sinα=------
1+tan2(α/2)
1-tan2(α/2)
cosα=------
1+tan2(α/2)
2tan(α/2)
tanα=------
1-tan2(α/2)
半形的正弦、餘弦和正切公式
三角函式的降冪公式
二倍角的正弦、餘弦和正切公式
三倍角的正弦、餘弦和正切公式
sin2α=2sinαcosα
cos2α=cos2α-sin2α=2cos2α-1=1-2sin2α
2tanα
tan2α=-----
1-tan2α
sin3α=3sinα-4sin3α
cos3α=4cos3α-3cosα
3tanα-tan3α
tan3α=------
1-3tan2α
三角函式的和差化積公式
三角函式的積化和差公式
α+βα-β
sinα+sinβ=2sin---·cos---22α+βα-β
sinα-sinβ=2cos---·sin---22α+βα-β
cosα+cosβ=2cos---·cos---22α+βα-β
cosα-cosβ=-2sin---·sin---221sinα
·cosβ=-[sin(α+β)+sin(α-β)]21cosα
·sinβ=-[sin(α+β)-sin(α-β)]21cosα
·cosβ=-[cos(α+β)+cos(α-β)]21sinα
·sinβ=-
-[cos(α+β)-cos(α-β)]
2化asinα
±bcosα為一個角的一個三角函式的形式(輔助角的三角函式的公式)
同角三角函式關係式有哪些?
2樓:河傳楊穎
^1、平方關係:
(1)sin^2(α
)+cos^2(α)=1 cos^2a=(1+cos2a)/2
(2)tan^2(α)+1=sec^2(α) sin^2a=(1-cos2a)/2
(3)cot^2(α)+1=csc^2(α)
2、積的關係:
(1)sinα=tanα*cosα
(2)cosα=cotα*sinα
(3)tanα=sinα*secα
(4)cotα=cosα*cscα
(5)secα=tanα*cscα
(6)cscα=secα*cotα
3、倒數關係:
(1)tanα·cotα=1
(2)sinα·cscα=1
(3)cosα·secα=1
誘導公式口訣「奇變偶不變,符號看象限」意義:
k×π/2±a(k∈z)的三角函式值.
當k為偶數時,等於α的同名三角函式值,前面加上一個把α看作銳角時原三角函式值的符號;
當k為奇數時,等於α的異名三角函式值,前面加上一個把α看作銳角時原三角函式值的符號。
傅立葉級數
傅立葉級數又稱三角級數
f(x)=a0/2+∑(n=0..∞) (ancosnx+bnsinnx)
a0=1/π∫(π..-π) (f(x))dx
an=1/π∫(π..-π) (f(x)cosnx)dx
bn=1/π∫(π..-π) (f(x)sinnx)dx
3樓:樂觀的高飛
同角三角函式的基本關係式:
(1)平方關係
(2)乘積關係
sinα=cosα·tanα,cosα=sinα·cotα
cotα=cosα·cscα,cscα=cotα·secα
secα=cscα·tanα,tanα=secα·sinα
(3)倒數關係
sinα·cscα=1
cosα·secα=1
tanα·cotα=1
這些都是比較常用的三角函式關係,對高考而言,沒有那個是特殊的重點。
拓展資料:
三角和的三角函式:
sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ
cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ
tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)
輔助角公式:
asinα+bcosα=(a^2+b^2)^(1/2)sin(α+t),其中
sint=b/(a^2+b^2)^(1/2)
cost=a/(a^2+b^2)^(1/2)
tant=b/a
asinα+bcosα=(a^2+b^2)^(1/2)cos(α-t),tant=a/b
倍角公式:
sin(2α)=2sinα·cosα=2/(tanα+cotα)
cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)
tan(2α)=2tanα/[1-tan^2(α)]
三倍角公式:
sin(3α)=3sinα-4sin^3(α)
cos(3α)=4cos^3(α)-3cosα
半形公式:
sin(α/2)=±√((1-cosα)/2)
cos(α/2)=±√((1+cosα)/2)
tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα
降冪公式
sin^2(α)=(1-cos(2α))/2=versin(2α)/2
cos^2(α)=(1+cos(2α))/2=covers(2α)/2
tan^2(α)=(1-cos(2α))/(1+cos(2α))
4樓:匿名使用者
同角三角函式的基本關係式:
根據三角函式定義,容易得到如下關係式:
(1)平方關係
(2)乘積關係
sinα=cosα·tanα,cosα=sinα·cotαcotα=cosα·cscα,cscα=cotα·secαsecα=cscα·tanα,tanα=secα·sinα(3)倒數關係
sinα·cscα=1
cosα·secα=1
tanα·cotα=1
記憶方法(如圖):首先某函式與它的餘函式在同一水平線上.
1在對角線上的兩個三角函式值的乘積等於1,如tanα·cotα=1.
3任意一個頂點上的三角函式值等於與它相鄰的兩個頂點的函式值的乘積,如sinα=cosα·tanα,cosα=sinα·cotα.
5樓:瘋言勿語
關係式很多,只要是靠正六邊形吧
關係式順推和逆推都要熟
常用的是 sinx^2+cosx^2=1
tanx^2-1=1/cosx^2
tanx*cotx=1
6樓:我是why星的
還有sinx+cosx=根號2倍的sin(x+∏/4)
7樓:匿名使用者
沒有問題星辰之賜星辰之賜xc
同角三角函式間的基本關係式是什麼
8樓:弘雪珊仍來
·平方關係:
sin^2(α
)+cos^2(α)=1
cos^2a=(1+cos2a)/2
tan^2(α)+1=sec^2(α)
sin^2a=(1-cos2a)/2
cot^2(α)+1=csc^2(α)
·積的關係:
sinα=tanα*cosα
cosα=cotα*sinα
tanα=sinα*secα
cotα=cosα*cscα
secα=tanα*cscα
cscα=secα*cotα
·倒數關係:
tanα·cotα=1
sinα·cscα=1
cosα·secα=1
直角三角形abc中,
角a的正弦值就等於角a的對邊比斜邊,
餘弦等於角a的鄰邊比斜邊
正切等於對邊比鄰邊,
·三角函式恆等變形公式
·兩角和與差的三角函式:
cos(α+β)=cosα·cosβ-sinα·sinβ
cos(α-β)=cosα·cosβ+sinα·sinβ
sin(α±β)=sinα·cosβ±cosα·sinβ
tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)
tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)
·三角和的三角函式:
sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ
cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ
tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)
·輔助角公式:
asinα+bcosα=(a^2+b^2)^(1/2)sin(α+t),其中
sint=b/(a^2+b^2)^(1/2)
cost=a/(a^2+b^2)^(1/2)
tant=b/a
asinα+bcosα=(a^2+b^2)^(1/2)cos(α-t),tant=a/b
·倍角公式:
sin(2α)=2sinα·cosα=2/(tanα+cotα)
cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)
tan(2α)=2tanα/[1-tan^2(α)]
·三倍角公式:
sin(3α)=3sinα-4sin^3(α)
cos(3α)=4cos^3(α)-3cosα
·半形公式:
sin(α/2)=±√((1-cosα)/2)
cos(α/2)=±√((1+cosα)/2)
tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα
·降冪公式
sin^2(α)=(1-cos(2α))/2=versin(2α)/2
cos^2(α)=(1+cos(2α))/2=covers(2α)/2
tan^2(α)=(1-cos(2α))/(1+cos(2α))
·萬能公式:
sinα=2tan(α/2)/[1+tan^2(α/2)]
cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]
tanα=2tan(α/2)/[1-tan^2(α/2)]
·積化和差公式:
sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]
cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]
cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]
sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]
·和差化積公式:
sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]
sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]
cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]
cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]
·推導公式
tanα+cotα=2/sin2α
tanα-cotα=-2cot2α
1+cos2α=2cos^2α
1-cos2α=2sin^2α
1+sinα=(sinα/2+cosα/2)^2
·其他:
sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+......+sin[α+2π*(n-1)/n]=0
cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+......+cos[α+2π*(n-1)/n]=0
以及sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2
tanatanbtan(a+b)+tana+tanb-tan(a+b)=0
cosx+cos2x+...+cosnx=
[sin(n+1)x+sinnx-sinx]/2sinx
三角函式關係式三角函式基本關係式
三角函式值表 數關係tan cot 1 sin csc 1 cos sec 1 商的關係 tan sin cos cot cos sin 正弦二倍角公式 sin2 2cos sin 推導 sin2a sin a a sinacosa cosasina 2sinacosa 拓展公式 sin2a 2si...
反三角函式,三角函式的反函式,還有反三角函式的反函式三者之間的關係,最好能舉例說明,謝謝
例1,三角函式 tana 2,反三角函式 arctan a 3,三角函式的反函式 tana a,反函式a arctana 4,反三角函式的反函式 tan arctan a a 反三角函式是三角函式的反函式嗎?是在特定範圍 內,反三角函式與三角函式 在 互為反函式。真正三角函式沒有反函式三角函式定定義...
三角函式問題,三角函式問題?
初中階段的所說的銳角三角函式是銳角的正弦 餘弦 正切 餘切四種函式的統稱.2 銳角三角函式表示的是兩個正數的比值,因而,銳角三角函式沒有單位.3 理清銳角三角函式中的自變數與因變數 對於上述四種函式來說,以 a為例,自變數都是銳角a,因變數就是銳角a的四種三角函式.這說明,當銳角a的大小不變時,銳角...