圓內接四邊形定理,圓內接四邊形定理

2021-03-19 18:35:06 字數 4389 閱讀 6154

1樓:范陽笠

四邊形abcd內接於抄圓o,延長ab至e,ac、bd交於p,則一:a+c=180度,b+d=180度,二:角abc=角adc(同弧所對的圓周角相等)。

三:角cbe=角d(外角等於內對角)

四:△abp∽△dcp(三個內角對應相等)五:ap*cp=bp*dp(相交弦定理)

六:ab*cd+ad*cb=ac*bd(托勒密定理)

2樓:匿名使用者

對角和為180°,每條對角線被交點分成乘積相等的兩部分,......

圓內接四邊形的性質

3樓:花降如雪秋風錘

圓內接四邊形的性質一共有7條,如下:

1、圓內接四邊形的對角互補:∠bad+∠dcb=180°,∠abc+∠adc=180°

2、圓內接四邊形的任意一個外角等於它的內對角:∠cbe=∠adc3、圓心角的度數等於所對弧的圓周角的度數的兩倍:∠aob=2∠acb=2∠adb

4、同弧所對的圓周角相等:∠abd=∠acd5、圓內接四邊形對應三角形相似:△abp∽△dcp(三個內角對應相等)

6、相交弦定理:ap×cp=bp×dp

7、托勒密定理:ab×cd+ad×cb=ac×bd

4樓:娃哈哈鏡

如四邊形abcd內接於圓o,延長ab至e,ac、bd交於p,則a+c=180度,b+d=180度,

角abc=角adc(同弧所對的圓周角相等)。

角cbe=角d(外角等於內對角)

△abp∽△dcp(三個內角對應相等)

ap*cp=bp*dp(相交弦定理)

ab*cd+ad*cb=ac*bd(托勒密定理)

5樓:泠月藏笑

圓內接四邊形的對角互補.

圓的內接四邊形的對角互補,並且任意一個外角等於它的內對角.

6樓:沒有全能

圓內接四邊形對角互補,並且任何一個外角都等於它的內對角。

哪有這麼多性質啊?

7樓:倚天♂屠龍

的確只有兩個嘛,一個是它的對角互補,另一個是它每一個內角的外角都等於這個內角的對角.

圓內接四邊形的性質定理

8樓:小費

以右圖所示圓內接四邊形abcd為例,圓心為o,延長ab至e,ac、bd交於p,則:

▶圓內接四邊形的對角互補:∠bad+∠dcb=180°,∠abc+∠adc=180°

▶圓內接四邊形的任意一個外角等於它的內對角:∠cbe=∠adc▶圓心角的度數等於所對弧的圓周角的度數的兩倍:∠aob=2∠acb=2∠adb

▶同弧所對的圓周角相等:∠abd=∠acd▶圓內接四邊形對應三角形相似:△abp∽△dcp(三個內角對應相等)▶相交弦定理:ap×cp=bp×dp

▶托勒密定理:ab×cd+ad×cb=ac×bd

圓內接四邊形的判定定理

9樓:小希

1、如果一個四邊形的對角互補,那麼這個四邊形內接於一個圓;

2、如果一個四邊形的外角等於它的內對角,那麼這個四邊形內接於一個圓;

3、如果一個四邊形的四個頂點與某定點等距離,那麼這個四邊形內接於以該點為圓心的一個圓;

4、若有兩個同底的三角形,另一頂點都在底的同旁,且頂角相等,那麼這兩個三角形有公共的外接圓;

5、如果一個四邊形的張角相等,那麼這個四邊形內接於一個圓;

6、相交弦定理的逆定理;

7、托勒密定理的逆定理。

圓的內接四邊形有哪些性質?

10樓:___耐撕

以圓內接四邊形abcd為例,圓心為o,延長ab至e,ac、bd交於p,則:

1、圓內接四邊形的對角互補:∠bad+∠dcb=180°,∠abc+∠adc=180°

2、圓內接四邊形的任意一個外角等於它的內對角:∠cbe=∠adc

3、圓心角的度數等於所對弧的圓周角的度數的兩倍:∠aob=2∠acb=2∠adb

4、同弧所對的圓周角相等:∠abd=∠acd

5、圓內接四邊形對應三角形相似:△abp∽△dcp(三個內角對應相等)

6、相交弦定理:ap×cp=bp×dp

7、托勒密定理:ab×cd+ad×cb=ac×bd

擴充套件資料:

判定定理:

1、如果一個四邊形的對角互補,那麼這個四邊形內接於一個圓。

2、如果一個四邊形的外角等於它的內對角,那麼這個四邊形內接於一個圓。

3、如果一個四邊形的四個頂點與某定點等距離,那麼這個四邊形內接於以該點為圓心的一個圓。

4、若有兩個同底的三角形,另一頂點都在底的同旁,且頂角相等,那麼這兩個三角形有公共的外接圓。

5、如果一個四邊形的張角相等,那麼這個四邊形內接於一個圓。

圓內接四邊形:

1、四邊形的四個頂點均在同一個圓上的四邊形叫做圓內接四邊形。

2、圓內接四邊形的對角互補。

3、圓內接四邊形的任意一個外角等於它的內對角。

4、圓的內接凸四邊形兩對對邊乘積的和等於兩條對角線的乘積。

5、如果一個四邊形的對角互補,那麼這個四邊形的四個頂點在同一個圓上。

6、圓內接四邊形面積s=√[(p-a)(p-b)(p-c)(p-d)]。(a,b,c,d為四邊形的四邊長,其中p=(a+b+c+d)/2)

11樓:鈺鈺

1、四點共圓;

2、四邊形對角互補;

3、四邊形某外角等於其內對角。

園內接四邊形判定定理:

1、如果一個四邊形的對角互補,那麼這個四邊形內接於一個圓;

2、如果一個四邊形的外角等於它的內對角,那麼這個四邊形內接於一個圓;

3、如果一個四邊形的四個頂點與某定點等距離,那麼這個四邊形內接於以該點為圓心的一個圓;

4、若有兩個同底的三角形,另一頂點都在底的同旁,且頂角相等,那麼這兩個三角形有公共的外接圓;

5、如果一個四邊形的張角相等,那麼這個四邊形內接於一個圓;

6、相交弦定理的逆定理;

7、托勒密定理的逆定理。

12樓:寧馨兒文集

那是四邊形的對角線所先鋒的兩個三角形有共同的外接圓的。

圓內接四邊形性質定理

13樓:匿名使用者

如題:四邊形abcd內接於圓o,延長ab至e,ac、bd交於p,則一:a+c=180度,b+d=180度,二:角abc=角adc(同弧所對的圓周角相等)。

三:角cbe=角d(外角等於內對角)

四:△abp∽△dcp(三個內角對應相等)五:ap*cp=bp*dp(相交弦定理)

六:ab*cd+ad*cb=ac*bd(托勒密定理)

14樓:匿名使用者

主要定理及其詳細證明如下圖 開啟連結即可

15樓:堵秀榮祿綾

教材上有兩條

1.圓內接四邊形的對角互補

2.圓內接四邊形的外角等於它的內對角

還有托勒密定理:圓內接四邊形對邊乘積的和,等於對角線的乘積

圓的內接四邊形有哪些性質

16樓:匿名使用者

以上圖所示圓內接四邊形abcd為例:

圓心為o,延長ab至e,ac、bd交於p,則:

圓內接四邊形的對角互補:∠bad+∠dcb=180°,∠abc+∠adc=180°

圓內接四邊形的任意一個外角等於它的內對角:∠cbe=∠adc圓心角的度數等於所對弧的圓周角的度數的兩倍:∠aob=2∠acb=2∠adb

同弧所對的圓周角相等:∠abd=∠acd

圓內接四邊形對應三角形相似:△abp∽△dcp(三個內角對應相等)相交弦定理:ap×cp=bp×dp

托勒密定理:ab×cd+ad×cb=ac×bd

17樓:鈺鈺

1、四點共圓;

2、四邊形對角互補;

3、四邊形某外角等於其內對角。

園內接四邊形判定定理:

1、如果一個四邊形的對角互補,那麼這個四邊形內接於一個圓;

2、如果一個四邊形的外角等於它的內對角,那麼這個四邊形內接於一個圓;

3、如果一個四邊形的四個頂點與某定點等距離,那麼這個四邊形內接於以該點為圓心的一個圓;

4、若有兩個同底的三角形,另一頂點都在底的同旁,且頂角相等,那麼這兩個三角形有公共的外接圓;

5、如果一個四邊形的張角相等,那麼這個四邊形內接於一個圓;

6、相交弦定理的逆定理;

7、托勒密定理的逆定理。

18樓:匿名使用者

1.四點共圓

2.四邊形對角互補

3.四邊形某外角等於其內對角

圓的內接四邊形有哪些性質圓的內接四邊形有哪些性質為什麼

以上圖所示圓內接四邊形abcd為例 圓心為o,延長ab至e,ac bd交於p,則 圓內接四邊形的對角互補 bad dcb 180 abc adc 180 圓內接四邊形的任意一個外角等於它的內對角 cbe adc圓心角的度數等於所對弧的圓周角的度數的兩倍 aob 2 acb 2 adb 同弧所對的圓周...

怎樣證明圓內接四邊形的對角互補,如何證明圓內接四邊形對角互補

方法一 直徑對應的圓周角為直角四邊形頂點abcd,圓心o 連線ao延長交圓周於c 連線bc dc ac 是直徑,abc adc 90 bad bc d 180 bc d bcd 對應相同的圓弧 bad bcd 180 互補同理可以證明另兩個角 證法二 利用圓心角 圓周角 2 以弧bad對應的圓心角為...

圓的內接四邊形為什麼對角互補或者相等?這是定理嗎? 可以不是正四邊形

圓的內接四邊形對角互補,根據圓周角的度數等於所對應弧的弧度的一半可證。圓的內接四邊形一定是矩形或正方形 圓的內接四邊形為什麼對角互補或者相等 如圖,a對應的圓弧為bcd,a 圓弧bcd弧度的一半,同理,c對應的圓弧為bad,a 圓弧bad弧度的一半,a c 圓弧bcd弧度 圓弧bad弧度 2 360...