知道矩陣,如何求他的可交換矩陣,知道一個矩陣,如何求他的可交換矩陣

2021-05-17 15:47:00 字數 1611 閱讀 7047

1樓:

與a可交換的bai矩陣是3階方陣

,設dub=(bij)與a可交換,則

zhiab=ba,dao比較兩邊對

版應元素得:b11=b22=b33,b12=b23,b21=b31=b32=0,所以與權a可交換的矩陣是如下形式的矩陣:

a b c

0 a b

0 0 a

其中a,b,c是任意實數

求所有與矩陣a可交換的矩陣

2樓:墨汁諾

直接用待抄定係數法

b=a b

c d然後襲代入ab=ba可以算出a=d, c=0, 這是充要的bai,所以所有與a可交換的du矩zhi陣恰好有如下dao形式

b=a b

0 a與a可交換的矩陣是3階方陣,設b=(bij)與a可交換,則ab=ba,比較兩邊對應元素的:b11=b22=b33,b12=b23,b21=b31=b32=0,所以與a可交換的矩陣是如下形式的矩陣:a b c0 a b0 0 a其中a,b,c是任意實數。

3樓:zzllrr小樂

根據可交換的定義ab=ba,解得

如果ab=ba,矩陣b就稱為與a可交換。設a= 求所有與a可交換的矩陣

4樓:匿名使用者

解: 設 b = b1 b2 b3 b4 因為 ab = ba所以有 b1 + b3 b2 + b4 0 0 = b1 b1 b3 b3,

所以 b1+b3 = b1 b2+b4 = b1 b3 = 0故 b = a+b a 0 b a,b 為任意常數逆矩陣的求法:對n*2n矩陣(a|e)進行一系列初等變換,當a變成e時,右邊的e就同步地變成

a^(-1)(即逆矩陣)。

例如:a=4 6

「與a可交換的矩陣」叫作「逆矩陣」逆矩陣的定義:設a是n階方陣,e是n階單位矩陣,若存在一個n 階方陣b,使得ab=ba=e,則稱b為方陣a的逆矩陣,並且逆矩陣是唯一的。

5樓:

首先,你要知道,兩個矩陣可交換,說明它們都是方陣。所以先設要求的矩陣為和a同階的形式。

然後,根據ab=ba,用矩陣的乘法表示出來最後,左右兩邊對應位置的元素相等,就解出來了不知我說清楚沒有

6樓:9700八哥

可交換矩陣和逆矩陣是兩碼事,二樓的說錯了。

7樓:匿名使用者

你所說的「與a可交換的矩陣」叫作「逆矩陣」

逆矩陣的定義:

設a是n階方陣,e是n階單位矩陣,若存在一個n 階方陣b,使得ab=ba=e,則稱b為方陣a的逆矩陣,並且逆矩陣是唯一的。

逆矩陣的求法:

對n*2n矩陣(a|e)進行一系列初等變換,當a變成e時,右邊的e就同步地變成

a^(-1)(即逆矩陣)。

例如:a=

4 68 3

(a|e)=

4 6 1 0

8 3 0 1

初等變換後(即a變成e)

1 0 -1/12 1/6

0 1 2/9 -1/9

所以,a的逆矩陣為:

-1/12 1/6

2/9 -1/9

矩陣如何計算,矩陣的概念,矩陣中的秩是如何定義和計算的

方法一 初等變換 此方法適用於單獨給出一個矩陣求逆矩陣,考試中一般矩陣的階數不會太高的,放心 方法二 公式變換 抽象矩陣之間的運算,等式左邊一坨,右邊一坨,比如求a的逆,先把含a的劃到等式一邊,提取公因式後 b坨 ac坨 d坨,根據定義,等號兩邊分別左乘b坨的逆右乘c坨的逆,即a b坨的逆 d坨c坨...

如何計算3階以內的矩陣求逆矩陣

求三階行列式的逆矩陣的方法 假設三階矩陣a,用a的伴隨矩陣除以a的行列式,得到的結果就是a的逆矩陣。具體求解過程如下 對於三階矩陣a a11 a12 a13 a21 a22 a23 a31 a32 a33 行列式 a a11a22a33 a12a23a31 a13a21a32 a11a23a32 a...

如何求矩陣的特徵值,如何求矩陣的特徵值

相似矩陣有相同的特徵值。對於a有和b都有 2,剩下的二次項根據待定係數法求解。矩陣特徵值的求矩陣特徵值的方法 求矩陣特徵值的方法 如下 其中矩陣q為正交矩陣,矩陣r為上三角矩陣,至於qr分解到底是怎麼回事,矩陣q和矩陣r是怎麼得到的,你們還是看矩陣論吧,如果我把這些都介紹了,感覺這篇文章要寫崩,或者...