1樓:匿名使用者
二元函式z = f(x,y)p(x,y)點增量三角洲z = f(x + ax,y + ay)-f(x,y)被稱為「全增量δz表示δz=aδx+bδy+ o(ρ),其中,a,b,是一個常數內容δx和δy,鄰(對),這意味著當p→無限稍微高階比ρ0,比如o (p)條趨向於0比p趨於0的速度更快的速度,aδx+bδy成為函式增量的主要部分,關於ax,ay的是線性的,則所述二進位制函式z =函式f(x,)在p點可微,所述aδx+bδy的總的差分作為一個功能。 dz =aδx+bδy,由於差的獨立變數表示的是量的變化,所以dz =切除+ bdy。 x的偏導數,b y的偏導數
全部增量三角洲z = f(2.02,-1.01)-f(2,-1)= 2.
02 ^ 2 *( - 1.01)^ 3 - 2 ^ 2 *(-1)^ 3 = -0.2040402004
全差分:2xy zx的偏導數^ 3,y的偏導數3倍^ 2 * y ^ 2
在點(2,-1),a = 2 * 2 *(-1)^ 3 = 4,b = 3 * 2 ^ 2 *(-1)^ 2 = 12
dz的= -4 * 0.02 +12 *(-0.01)= -0.20
數學 全導數與全微分的區別是什麼?如何判別?
2樓:匿名使用者
1、含義上的區別
全導數:設z是u、v的二元函式z=f(u,v),
u、v是x的一元函式u=u(x)、v=v(x),z通過中間變數u、v構成自變數x的複合函式。這種兩個中間變數、一個自變數的多元複合函式是一元函式,其導數稱為全導數。
全微分:表示式dz=fx(x,y)δx+fy(x,y)δy,稱為函式z=f(x, y) 在(x, y)處(關於δx, δy)的全微分。
2、定理上的區別
全導數:一一型鎖鏈法則在中間變數只有一個時可得;二一型鎖鏈法則,設u=u(x)、v=v(x)在x可導,z=f(u,v)在相應點(u,v)有連續偏導數,則複合函式z=f(u(x),v(x))在x可導;三一型鎖鏈法則,在中間變數多於兩個時可得。
全微分:函式z=f(x,y)在點p0(x0,y0)處可微,則在p0(x0,y0)處連續,且各個偏導數存在,並且有f′x(x0,y0)=a,f′y(x0,y0)=b;若函式z=f(x,y)在點p0(x0,y0)處的偏導數f′x,f′y連續,則函式f在點p0處可微。
3、特性上的區別
全導數的出現可以作為一類導數概念的補充,其中滲透著整合全部變數的思想。
全微分可推廣到三元及三元以上函式。函式若在某平面區域d內處處可微時,則稱這個函式是d內的可微函式。
3樓:紫色學習
1.偏導數
代數意義
偏導數是對一個變數求導,另一個變
量當做數
對x求偏導的話y就看作一個數,描述的是x方向上的變化率
對y求偏導的話x就看作一個數,描述的是y方向上的變化率
幾何意義
對x求偏導是曲面z=f(x,y)在x方向上的切線
對y求偏導是曲面z=f(x,y)在x方向上的切線
這裡在補充點.就是因為偏導數只能描述x方向或y方向上的變化情況,但是我們要了解各個方向上的情況,所以後面有方向導數的概念.
2.微分
偏增量:x增加時f(x,y)增量或y增加時f(x,y)
偏微分:在detax趨進於0時偏增量的線性主要部分
detaz=fx(x,y)detax+o(detax)
右邊等式第一項就是線性主要部分,就叫做在(x,y)點對x的偏微分
這個等式也給出了求偏微分的方法,就是用求x的偏導數求偏微分
全增量:x,y都增加時f(x,y)的增量
全微分:根號(detax方+detay方)趨於0時,全增量的線性主要部分
同樣也有求全微分公式,也建立了全微分和偏導數的關係
dz=adx+bdy 其中a就是對x求偏導,b就是對y求偏導
希望樓主注意的是導數和微分是兩個概念,他們之間的關係就是上面所說的公式.概念上先有導數,再有微分,然後有了導數和微分的關係公式,公式同時也指明瞭求微分的方法.
3.全導數
全導數是在複合函式中的概念,和上面的概念不是一個系統,要分開.
u=a(t),v=b(t)
z=f[a(t),b(t)]
dz/dt 就是全導數,這是複合函式求導中的一種情況,只有這時才有全導數的概念.
dz/dt=(偏z/偏u)(du/dt)+(偏z/偏v)(dv/dt)
建議樓主在複合函式求導這裡好好看看書,這裡分為3種情況.1.中間變數一元就是上面的情況,才有全導數的概念.
2.中間變數有多元,只能求偏導 3.中間變兩有一元也有多元,還是求偏導.
對於你的題能求對x的偏導數,對y的偏導數,z的全微分,不能求全導數
如果z=f(x^2,2^x) 只有這種情況下dz/dx才是全導數!
1。偏導數
代數意義
偏導數是對一個變數求導,另一個變數當做數
對x求偏導的話y就看作一個數,描述的是x方向上的變化率
對y求偏導的話x就看作一個數,描述的是y方向上的變化率
幾何意義
對x求偏導是曲面z=f(x,y)在x方向上的切線
對y求偏導是曲面z=f(x,y)在x方向上的切線
這裡在補充點。就是因為偏導數只能描述x方向或y方向上的變化情況,但是我們要了解各個方向上的情況,所以後面有方向導數的概念。
2。微分
偏增量:x增加時f(x,y)增量或y增加時f(x,y)
偏微分:在detax趨進於0時偏增量的線性主要部分
detaz=fx(x,y)detax+o(detax)
右邊等式第一項就是線性主要部分,就叫做在(x,y)點對x的偏微分
這個等式也給出了求偏微分的方法,就是用求x的偏導數求偏微分
全增量:x,y都增加時f(x,y)的增量
全微分:根號(detax方+detay方)趨於0時,全增量的線性主要部分
同樣也有求全微分公式,也建立了全微分和偏導數的關係
dz=adx+bdy 其中a就是對x求偏導,b就是對y求偏導
希望樓主注意的是導數和微分是兩個概念,他們之間的關係就是上面所說的公式。概念上先有導數,再有微分,然後有了導數和微分的關係公式,公式同時也指明瞭求微分的方法。
3.全導數
全導數是在複合函式中的概念,和上面的概念不是一個系統,要分開。
u=a(t),v=b(t)
z=f[a(t),b(t)]
dz/dt 就是全導數,這是複合函式求導中的一種情況,只有這時才有全導數的概念。
dz/dt=(偏z/偏u)(du/dt)+(偏z/偏v)(dv/dt)
建議樓主在複合函式求導這裡好好看看書,這裡分為3種情況。1.中間變數一元就是上面的情況,才有全導數的概念。
2.中間變數有多元,只能求偏導 3.中間變兩有一元也有多元,還是求偏導。
對於你的題能求對x的偏導數,對y的偏導數,z的全微分,不能求全導數
如果z=f(x^2,2^x) 只有這種情況下dz/dx才是全導數!
偏導數就是
在一個範圍裡導數,如在(x0,y0)處導數。
全導數就是
定義域為r的導數,如在實數內都是可導的
在數學中,一個多變數的函式的偏導數是它關於其中一個變數的導數,而保持其他變數恆定(相對於全導數,在其中所有變數都允許變化)。偏導數在向量分析和微分幾何中是很有用的。
函式f關於變數x的偏導數寫為或。偏導數符號是圓體字母,區別於全導數符號的正體d。 這個符號是阿德里安-馬裡·勒讓德介入的並在雅可比的重新介入後得到普遍接受。
偏導數z=xy+y
對x求偏導z'=y
對y求偏導z'=x+1
全導數y=x^2
對x求偏導 y'=2x
求偏導時就把其它變數看作常數,字母代號即可,如z=x^2+y^2,
對x求偏導,zx=2x,
對y求偏導,zy=2y,
全導時對所有變數分別求導,如對z求全導dz=2xdx+2ydy
為什麼函式f(x,y)的全微分=0啊是怎麼理解
4樓:demon陌
全微分是對f(x.y)=0的操作,所以等於0。
z=f(x,y),如果z可微,那麼它的全微分就是dz=adx+bdy=grad(z)*dx。dx->0,dz->0,就這麼個意思。
此外,當點(x,y)是駐點的時候,才有全微分為零:dz=0,也就是說grad(z)=0,這也就是求駐點的方法。
函式若在某平面區域d內處處可微時,則稱這個函式是d內的可微函式,全微分的定義可推廣到三元及三元以上函式。
5樓:玲玲幽魂
z=f(x,y),如果z可微,那麼它的全微分就是dz=adx+bdy=grad(z)*dx.dx->0,dz->0,就這麼個意思.此外,當點(x,y)是駐點的時候,才有全微分為零:
dz=0,也就是
說grad(z)=0,這也就是求駐點的方法.
高等數學全增量與全微分全增量與全微分的區別?
全增量是函式z的變化量 即z2 z1 而全微分dz 偏微分x dx 偏微分 dy兩者近似相等 因為 全增量delta 小三角號 z 權威分dz o p 其中o p 是全微分的高階無窮小明白了嗎?對於這個例子來說 全增量 z2 z1 z x 1.05,y 2.1 z x 1,y 2 0.9225 全微...
關於全微分方程,關於全微分方程的解
不可能對,您的理解有問題,沒明白全微分方程的實質。全微分方程實際上是方程可以寫成d f x,y 0的形式,然後對兩邊同時取積分,解得f x,y c為原方程的解,例如2xdx 3y 2 方程可以化為d x 2 d y 3 0等價於d x 2 y 3 0直接積分得x 2 y 3 c,因此原方程也可以直接...
全微分的本質是近似值嗎,第2大題,用全微分怎麼求近似值?
大體上說是對的 但是這個近似值表示為自變數改變數的線性組合,且函式改變數與微分的誤差是自變數改變數 平方和的算術根 的高階無窮小 第2大題,用全微分怎麼求近似值?5 全微分出現的意義是什麼?最開始是為了求什麼而引入全微分的?全微分是全增量的極限下求出的,對二元微分學來說,是屬於基礎形的 全微分和微分...