1樓:手機使用者
(i)f
′(x)=1
x+a(x>0),當a≥0時,f′(x)>0,函式f(x)單調遞增,此時函式f(x)最多有一個零點,不符合題意,應捨去;
當a<0時,令f′(x)=0,解得x=-1a.當0<x<?1
a時,f′(x)>0,此時函式f(x)單調遞增;當x>?1a時,f′(x)<0,此時函式f(x)單調遞減法.可知-1
a是函式f(x)的極大值點即最大值點,且當x→0時,f(x)→-∞;當x→+∞時,f(x)→-∞.
又函式f(x)=lnx+ax(a∈r)有兩個不同的零點x1、x2.∴f(x)max>0,即ln(?1
a)?1>0,解得?1
e<a<0.
∴a的取值範圍是(?1
e,0).
(ii)不妨設x1<x2.
由(i)可知:0<x
<?1a<x.
∵x>?1
a時,函式f(x)單調遞減,∴只要證明x+x2>?1a
即可,變為?2a?x
>?1a
.設g(x)=ln(?2
a?x)+a(?2
a?x)?(lnx+ax),∴g′
(x)=12a
+x?2a?1
x=?2(ax+1)
x(2+ax)
>0,x∈(0,?2
a),且g(?1
a)=0.
∴g(?2a?x
)>g(?1a).
∴?2a
?x>?1a.
(iii)由(ii)可得:x+x2
>?1a
.∵lnx1+ax1=0,lnx2+ax2=0,∴lnx1+lnx2=-a(x1+x2)>?a×(?2a)=2,∴xx>e.
已知集合a={x|ax2+2x+1=0,x∈r},a為實數. (1)若a是空集,求a的取值範圍;
2樓:匿名使用者
答案依次為:a>1、0或1、0或a≥1
(1)若a=φ,則只需ax2+2x+1=0無實數解,顯然a≠0,所以只需△=4-4a<0,即a>1即可.
(2)當a=0時,原方程化為2x+1=0解得x=-1/2;當a≠0時,只需△=4-4a=0,即a=1,故所求a的值為0或1;
(3)綜合(1)(2)可知,a中至多有一個元素時,a的值為0或a≥1。
這些都是二次函式的相關知識:
二次函式(quadratic function)的基本表示形式為y=ax²+bx+c(a≠0)。二次函式最高次必須為二次, 二次函式的影象是一條對稱軸與y軸平行或重合於y軸的拋物線。
二次函式表示式為y=ax²+bx+c(且a≠0),它的定義是一個二次多項式(或單項式)。
3樓:drar_迪麗熱巴
^(1)a是空集,所以
方程無解
即 b^2-4ac=4-4a1
(2)a是單元素集,所以方程有單根
即 b^2-4ac=4-4a=0
所以a=1
(3)若a中至多隻有一個元素,所以方程無解或有單根所以a>=1
集合特性
確定性給定一個集合,任給一個元素,該元素或者屬於或者不屬於該集合,二者必居其一,不允許有模稜兩可的情況出現。
互異性一個集合中,任何兩個元素都認為是不相同的,即每個元素只能出現一次。有時需要對同一元素出現多次的情形進行刻畫。
無序性一個集合中,每個元素的地位都是相同的,元素之間是無序的。集合上可以定義序關係,定義了序關係後。
4樓:匿名使用者
a x^2-3x+2=01.若a=空集,同上,判別式= 9-8a a>9/82.若a是單元素集,有兩種情況:
(1)判別式= 9-8a =0 => a=9/8(2)a=0,-3x+2=0 只有一個根 => a=03.若a不單元素集,a x^2-3x+2=0 有兩個實數根,a≠0 且判別式= 9-8a >0 => a
5樓:舒金燕
解(1)若a=φ,則只需ax2+2x+1=0無實數解,顯然a≠0,所以只需△=4﹣4a<0,即a>1即可.
(2)當a=0時,原方程化為2x+1=0解得x=﹣1/2;當a≠0時,只需△=4﹣4a=0,即a=1,故所求a的值為0或1;
(3)綜合(1)(2)可知,a中至多有一個元素時,a的值為0或a≥1.
已知函式f xx
1.f x 單調,最點應該是端點,f 0 f 1 0loga 2 1 loga 3 1 0loga6 2 a 2 6 a sqr 6 2.根據題意 i 單調增 ii f 0 0 a 1 loga 4 1 0 恆成立 所以1 1 f x 單調,最值點應該是端點,f 0 f 1 0loga 2 1 lo...
已知函式fx ax 3 bx 2 2有且僅有兩個不同的零點x1,x2,則
f x 3ax 2bx x 3ax 2b 0x 0或x 2b 3a 即f x 有兩個極值點 1 a 0 x趨近於 時,f x 趨近於 x趨近於 時,f x 趨近於 左邊的極值點為極大,右邊的為極小 要使f x 恰好有兩個不同的零點,則有兩種可能 i 0 2b 3a 此時f 0 0或f 2b 3a 0...
已知函式fa32在,已知函式fxax3x2在x43處取得極值,1確定a的值2若gxfxex,討論gx的單調性
f x ax3 x2 f x 3ax2 2x 在x 4 3處取得極值 f 4 3 3a 16 9 8 3 0a 1 2 f x 1 2x3 x2 g x e x f x e x 1 2x3 x2 g x e x 1 2x3 x2 e x 3 2x2 2x e x 1 2x3 5 2x2 2x 1 2...