1樓:遊過小溪的魚
設直線在 x 、y 軸上截距分別為 a、b (顯然 a、b 均不為 0 ),
那麼直線方程為 x/a+y/b=1 ,因為直線過點(3,2),所以有 3/a+2/b=1 。
(1)如果 a、b 均為正數,根據均值不等式,有
s=1/2*ab=1/2*ab(3/a+2/b)^2
=1/2*ab(9/a^2+4/b^2+12/ab)=1/2*(12+9b/a+4a/b)>=1/2*(12+2√36)=12 ,
因此當 a=6 ,b=4 時三角形面積最小值為 12 ,
此時直線方程為 x/6+y/4=1 ,化簡得 2x+3y-12=0 。
(2)如果 a<0 ,b>0 或 a>0 ,b<0 ,則當 a 趨於 0 時 ,s 、b 趨於 0 ,
因此不滿足條件;
(3)如果 a<0 ,b<0 ,顯然不滿足 3/a+2/b=1 ,這是不可能的。
綜上可得,當直線與 x、y 正半軸分別交於(6,0)、(0,4)時,三角形面積最小為 12 ,
此時直線方程為 2x+3y-12=0 。
2樓:7岸芷汀蘭
確定是求直線方程嘛?
問題:求過點(3,2)且與兩正座標軸圍成的三角形面積最小的直線l的方程為?
3樓:匿名使用者
解答:設直線方程為x/a+y/b=1 (a>0,b>0)直線過(3,2)
3/a+2/b=1
s=(1/2)ab
1=3/a+2/b≥2√(6/ab)
所以 1≥24/ab
ab≥24
當且僅當 3/a=2/b,即a=6,b=4時等號成立所以,s的最小值為12
此時 直線方程 x/6+y/4=1
即 2x+3y-12=0
求與兩座標軸圍成的三角形面積為4,且斜率為-2的直線l的方程.
4樓:獅子
這題可以這樣 你先畫一個直角座標系 並且將圖畫出來,大概就行。設直線與x軸的交點為a(a,0)設直線與y軸交點為b(0,b)那麼就可以根據條件列方程組: 二分之一乘以ab=4, b-0除以0-a=-2 即可。
5樓:匿名使用者
設直線l的方程為 y=2x+b,直線l與兩座標軸的交點分別為 (-b 2 ,0),(0,b),
由題意可得 1 2 •|b|•|-b 2 |=4,解得 b=±4,故直線l的方程為 y=2x±4,即 2x-y+4=0,或 2x-y-4=0.
6樓:莊愛琴
y=-2x+b
0.5b×b/2=4,b=4
y=-2x+4
已知直線l經過點(-2,2)且與兩座標軸圍成單位面積的三角形
7樓:匿名使用者
畫圖可知直線l與兩座標軸圍成的單位面積三角形只可能在第一象限、第三象限。
設直線方程 y = kx + b
代入 x = -2 ,y = 2
並聯立 |b| × |b/k| /2 = 1解得k、b即可
|###| 表示絕對值。
8樓:生不留戀
由已知得 直線l可以經過一二四 二三四 象限根據過點(-2,2)且與兩座標軸圍成單位面積的三角形三角形面積s=1/2ah h=2所以過點(0,-1) (1,0) y-2=k(x+2)
若直線l經過點(-2,3)且與座標軸圍成的三角形的面積為3/2,則此直線的方程為。
9樓:匿名使用者
y-3=k(x+2)
x=0,y=2k+3
y=0,x=-3/k-2
1/2*|2k+3||-3/k-2|=3/2化簡:(2k+3)^2=3|k|
k>0時,無解
k<0時,4k^2+15k+9=0
k=-3,-3/4
y=-3x-3或y=-3/4x+3/2
已知,直線l過點p(3,-2)且l與座標軸所圍成的三角形面積為4,求直線l的方程
10樓:中華行
解:設直線l的解析式為y=kx+b,因為它過點(3,-2)所以有-2=3k+b,則k=(-2-b)/3又因為直線與x軸和y軸的交點為(0,b),(-b/k,0)。由題意三角形的面積為4,可知:
b*3/(b+2)*(1/2)=4可得:3b^2-8b-16=0解得:b=4,b=-(4/3)從而可知:
直線l的解析式為:
y=-(2/9)x-(4/3),y=-2x+4
已知直線l與兩座標軸圍成的三角形的面積為3,分別求滿足下列條件的直線l的方程:(1)過定點a(-3,4);
11樓:幕府則寧伇
(1)設直線l的方程是y=k(x+3)+4,它在x軸、y軸上的截距分別是-4 k
-3,3k+4,
由已知,得|(3k+4)(-4 k
-3)|=6,
可得(3k+4)(-4 k
-3)=6或-6,
解得k1 =-2 3
或k2 =-8 3
.所以直線l的方程為:2x+3y-6=0或8x+3y+12=0.(2)設直線l在y軸上的截距為b,
則直線l的方程是y=1 6
x+b,它在x軸上的截距是-6b,
由已知,得|-6b?b|=6,∴b=±1.∴直線l的方程為x-6y+6=0或x-6y-6=0.
已知直線l經過點(3,-2),其傾斜角是60°.(1)求直線l的方程;(2)求直線l與兩座標軸圍成三角形的面
12樓:手機使用者
(1)由k=tan6°=3
,∴直線l的方程為y+2=
3(x?3),
化為3x?y?5=0,
即為所求的直線l的方程.
(2)令x=0,解得y=-5;
令y=0,解得x=53.
∴直線l與兩座標軸圍成三角形的面積s=1
2×|?5|×5
3=2536.
經過點(-2,2),且與兩座標軸所圍成的三角形面積為1的直線l的方程為______
13樓:萌蛋
設所求直線方程為xa+y
b=1,由已知可得?2a
+2b=11
2|a|b|=1
解得a=?1
b=?2
或a=2
b=1∴2x+y+2=0或x+2y-2=0為所求.故應填:2x+y+2=0或x+2y-2=0.
已知直線L經過點A 2,4 B 3,5 ,求直線L的方程
解 直線的斜率是k 4 5 2 3 1 5 則 y 1 5 x 2 4 化簡,得 x 5y 22 0所以 l x 5y 22 0 先求斜率 k 5 4 3 2 1 5 所以設直線方程是 y x 5 b 把點 2,4 代入方程得 4 2 5 b 20 2 5b 5b 22 b 22 5 所以直線方程是...
求過點p 2,3 且在兩座標軸上截距相等的直線的方程
設直線在x軸上截距是a,在y軸上截距是b 當兩截距都不為0時,根據截距式x a y b 1,將p帶入2 a 3 b 1,其中a b,計算出來a b 5,則x 5 y 5 1,即x y 5 0 當有截距為0時,設為y kx,將p帶入,則3 2k,k 3 2,y 3 2 x,即3x 2y 0 綜上,有兩...
已知直線y kx b經過A(1,4),B(0,2)兩點
解 因為直線y kx b經過a 1,4 b 0,2 兩點。所以 4 k b 2 b得 k 2 即該直線為y 2x 2 又因為該直線與x軸交於點c 所以點c的坐標是 1,0 由題可得koa 4 因為oa與經過點d 1,0 的直線平行。即過點d 1,0 的直線的斜率為k 4 設過點d 1,0 的直線為y...