1樓:匿名使用者
分析:①有理數的概念:
「有限小數」和「無限迴圈小數」統稱為有理數。
整數和分數也統稱為有理數。
所有的分數都是有理數,分子除以分母,最終一定是迴圈的。
②無理數的概念:無限不迴圈小數,可引申為「開方開不盡的數」。
③反證法的要領是假設一個明顯荒謬的結論成立,然後正確地證明原假設是錯誤的。
解:假設(√3)是有理數,
∵ 1<3<4
∴(√1)<(√3)<(√4)
即:1<(√3)<2
∴(√3)不是整數。
∵整數和分數也統稱為有理數,而(√3)不是整數
∴在假設「(√3)是有理數」的前提下,(√3)只能是一個分子分母不能約分的分數。
此時假設 (√3) = m/n(m、n均為正整數且互質,二者不能再約分,即二者除1外再無公因數)
兩邊平方,得:
m² / n² = 3
∴m² 是質數3的倍數
我們知道,如果兩個數的乘積是3的倍數,那麼這兩個數當中至少有一個數必是3的倍數。
∴由「m² (m與m的乘積) 是質數3的倍數」得:正整數m是3的倍數。
此時不妨設 m = 3k(k為正整數)
把「m = 3k」 代入「m² / n² = 3」 ,得:
(9k²) / n² = 3
∴3k² = n²
即:n² / k² = 3
對比「m² / n² = 3「 同理可證
正整數n也是3的倍數
∴正整數m和n均為3的倍數
這與「m、n均為正整數且互質」相矛盾。
意即由原假設出發推出了一個與原假設相矛盾的結論,
∴原假設「(√3) = m/n(m、n均為正整數且互質,二者不能再約分,即二者除1外再無公因數)」是不成立的。
∴(√3) 不能是一個分子分母不能約分的分數
而已證(√3) 不是整數
∴(√3) 既 不是整數也不是分數,即(√3) 不是有理數。
∴(√3) 是無理數。
2樓:**座小茶葉
用反證法。假設√3是有理數,則任何一個有理數都可以表示為既約分數m/n(即:m、n為整數,且互質)
因此√3=m/n,得3=m^2/n^2,即m^2=3*n^2,因此m^2含有3的因數,因此m含有3的因數
假設m=3p,則:(3p)^2=3*n^2,得n^2=3p^2,因此n^2含有3的因數,因此n含有3的因數
所以,m、n均含有3的因素,與m、n互為質數矛盾,因此√3是無理數這是一個通用的證法,可以證明√2、√5、√6等等是無理數。
如何證明根號3是無理數
3樓:匿名使用者
用反證法
假設根bai號du3是有理數,則必然能寫zhi成最簡分數daon/m,n與m為互質整數。
令 根號回3=x
x的平方
答=3=n的平方/m的平方
3為正整數,同時也是有理數,n的平方與m的平方互質(由n與m為互質整數得出)即不存在公約數,則m的平方必為1(不然無法等於一個整數3) 3=n的平方=x的平方
推出根號3=x=n, 由於n為整數,則根號3也為整數,顯然是不對的,所以
根號3為無理數
4樓:
^方法du
一:假設根號3=p/q(p、q為互質整zhi數),則p^2=3q^2
所以dao3整除內p^2,因3是質數,容所以3整除p,可設p=3t,則q^2=3t^2,所以3整除q
因此p和q有公約數3,與p和q互質矛盾,所以根號3是無理數
方法二:設x=根號3,則有方程x^2=3
假設x^2=3有有理數解x=p/q(p、q為互質整數),根據牛頓有理根定理p整除3,q整除1,所以p=1或3,q=1,從而x=1或3,顯然x=1或3不是方程x^2=3的根,矛盾。
方法三:設x=根號3=p/q,(p,q)=1,所以存在整數s,t使ps+qt=1
根號3=根號3*1=根號3(ps+qt)=(√3p)s+(√3q)t=3qs+pt為整數,矛盾
5樓:匿名使用者
^可設sqrt(3)=p/q;p,q互素且為正數。copy則p^bai2=3*q^2
所以可令
dup^2=3*k,k>=1且為正數。
則q^2=k;
但是zhiq,p互素,則q^2與p^2也互素,但由上所dao推可知,q^2與p^2有公因子k,矛盾,故sqrt(3)為無理數。
請證明:根號三是無理數
6樓:風之鷂
^^1、假設根號3=p/q(p、q為互質整數),則p^2=3q^2
所以3整除p^2,因3是質數,所以3整除p,可設p=3t,則q^2=3t^2,所以3整除q
因此p和q有公約數3,與p和q互質矛盾,所以根號3是無理數
2、設x=根號3,則有方程x^2=3
假設x^2=3有有理數解x=p/q(p、q為互質整數),根據牛頓有理根定理p整除3,q整除1,所以p=1或3,q=1,從而x=1或3,顯然x=1或3不是方程x^2=3的根,矛盾.
3、設x=根號3=p/q,(p,q)=1,所以存在整數s,t使ps+qt=1
根號3=根號3*1=根號3(ps+qt)=(√3p)s+(√3q)t=3qs+pt為整數,矛盾
拓展資料:
由無理數引發的數學危機一直延續到19世紀下半葉。2023年,德國數學家戴德金從連續性的要求出發,用有理數的「分割」來定義無理數,並把實數理論建立在嚴格的科學基礎上,從而結束了無理數被認為「無理」的時代,也結束了持續2000多年的數學史上的第一次大危機。
7樓:匿名使用者
^證明根號3是無理數,使用反證法
如果√3是有理數,必有√3=p/q(p、q為互質的正整數)兩邊平方:3=p^2/q^2
p^2=3q^2
顯然p為3的倍數,設p=3k(k為正整數)有9k^2=3q^2 即q^2=3k^2
於是q於是3的倍數,與p、q互質矛盾
∴假設不成立,√3是無理數
8樓:雄鷹
分析:①有理數的概念:
「有限小數」和「無限迴圈小數」統稱為有理數。
整數和分數也統稱為有理數。
所有的分數都是有理數,分子除以分母,最終一定是迴圈的。
②無理數的概念:無限不迴圈小數,可引申為「開方開不盡的數」。
③反證法的要領是假設一個明顯荒謬的結論成立,然後正確地證明原假設是錯誤的。
解:假設(√3)是有理數,
∵ 1<3<4
∴(√1)<(√3)<(√4)
即:1<(√3)<2
∴(√3)不是整數。
∵整數和分數也統稱為有理數,而(√3)不是整數
∴在假設「(√3)是有理數」的前提下,(√3)只能是一個分子分母不能約分的分數。
此時假設 (√3) = m/n(m、n均為正整數且互質,二者不能再約分,即二者除1外再無公因數)
兩邊平方,得:
m² / n² = 3
∴m² 是質數3的倍數
我們知道,如果兩個數的乘積是3的倍數,那麼這兩個數當中至少有一個數必是3的倍數。
∴由「m² (m與m的乘積) 是質數3的倍數」得:正整數m是3的倍數。
此時不妨設 m = 3k(k為正整數)
把「m = 3k」 代入「m² / n² = 3」 ,得:
(9k²) / n² = 3
∴3k² = n²
即:n² / k² = 3
對比「m² / n² = 3「 同理可證
正整數n也是3的倍數
∴正整數m和n均為3的倍數
這與「m、n均為正整數且互質」相矛盾。
意即由原假設出發推出了一個與原假設相矛盾的結論,
∴原假設「(√3) = m/n(m、n均為正整數且互質,二者不能再約分,即二者除1外再無公因數)」是不成立的。
∴(√3) 不能是一個分子分母不能約分的分數
而已證(√3) 不是整數
∴(√3) 既 不是整數也不是分數,即(√3) 不是有理數。
∴(√3) 是無理數。
9樓:遲沛山告琳
方法一:假設根號3=p/q(p、q為互質整數),則p^2=3q^2
所以3整除p^2,因3是質數,所以3整除p,可設p=3t,則q^2=3t^2,所以3整除q
因此p和q有公約數3,與p和q互質矛盾,所以根號3是無理數
方法二:設x=根號3,則有方程x^2=3
假設x^2=3有有理數解x=p/q(p、q為互質整數),根據牛頓有理根定理p整除3,q整除1,所以p=1或3,q=1,從而x=1或3,顯然x=1或3不是方程x^2=3的根,矛盾。
方法三:設x=根號3=p/q,(p,q)=1,所以存在整數s,t使ps+qt=1
根號3=根號3*1=根號3(ps+qt)=(√3p)s+(√3q)t=3qs+pt為整數,矛盾
10樓:樸卉吾嘉懿
^反證:假設根號3是有理數,則存在兩個互質整數m和n使得根號3=m/n.兩邊平方並整理得m^2=3n^2,
於是m是3的倍數,令m=3q,
代入上式整理得:n^2=3q^2,
故n也是3的倍數,這與m,n互質矛盾。故根號3是無理數。證畢。
如何證明根號3是無理數???????
11樓:淺唱湘雪
剛做過這種題目……我想想哈。
無理數是不能夠被寫成兩個整數比的
設根號3=a/b(a和b是互版質的整數,公約數權只有1)
則3=a²/b²
∴a²=3b²
可以得出a是3的倍數 ,設a=3n
∴(3n)²=3b²
這就跟a/b中a和b是互質的兩個整數相悖逆,因為a和b有公約數3,也就是用反證法的方式證明根號3是無理數
全部手打tat
12樓:匿名使用者
^方法一來:假設根號3=p/q(p、q為互質整數),源則p^2=3q^bai2
所以du3整除
zhip^2,因3是質dao
數,所以3整除p,可設p=3t,則q^2=3t^2,所以3整除q因此p和q有公約數3,與p和q互質矛盾,所以根號3是無理數方法二:設x=根號3,則有方程x^2=3
假設x^2=3有有理數解x=p/q(p、q為互質整數),根據牛頓有理根定理p整除3,q整除1,所以p=1或3,q=1,從而x=1或3,顯然x=1或3不是方程x^2=3的根,矛盾。
方法三:設x=根號3=p/q,(p,q)=1,所以存在整數s,t使ps+qt=1
根號3=根號3*1=根號3(ps+qt)=(√3p)s+(√3q)t=3qs+pt為整數,矛盾
13樓:晁溫嶽雁
證明:若
3是有理bai數,則3=p/q;(p,q是du互素的整數zhi,即p,q的最大
dao約數是1)
則有3q=p;
則可令p=3k;(k大於專0的整數)
可得q=k;
但是k,3k的最大公約數為
屬k即p,q的最大公約數為k;
這與最大公數約為1矛盾。
故3不是有理數,即是無理數。
證明根號3是無理數,怎麼證明根號三是無理數
反證法 假設 3是有理數。1 2 3 2 2 2 1 3 2,所以 3不是整數,設 3 p q p和q互質 把 3 p q 兩邊平方 3 p 2 q 2 3 q 2 p 2 3q 2是3的倍數數,p 必定3的倍數,設p 3k3 q 2 9 k 2 q 2 3k 2 同理q也是3的倍數數,這與前面假設...
證明根號5是無理數如何證明是無理數?
假設 根號5是有理數,設 根號5 p q,其中,p,q是正的自然數且互質。則由p 2 5q 2知 p 2可以被5整除,所以p也能被5 整除 反證法可以證得 如果p不能被5整除,則p 2也不能被5整除,得證 設p 5 n n是正的自然數 則5q 2 p 2 25n 2 這樣 q 2也能被5整除,q也能...
如何證明根號6加根號10是無理數
證明 假設 x 6 10 是有 理數,則 10 x 6,所以 10 x 2 2 6 x 6.所以 6 x 2 4 2x 又因為 x 是有理版數,所以 6 x 2 4 2x 是有理數.與 6 是無權理數 矛盾.所以 假設不成立,即 6 10 是無理數.以上用到一個結論 若 n是正整數,且不是完全平方數...