關於證明「根號3為無理數」的一些問題

2021-05-25 10:09:27 字數 5566 閱讀 6476

1樓:匿名使用者

反證法:若根號

2加根號3是分數(即整數與整數的比)或說是有理數吧則平方以版後也應是有理權數即5+2根號6也是有理數即根號6是有理數顯然根號6只能是分數,不妨設此分數約至最簡時為b/a 則a,b互質,否則還可約 6=b^2/a^2 即b^2=6a^2 所以b^2為6的倍數(即為2,3的倍數)所以b為2,3的倍數(即為6的倍數)所以b^2為36的倍數,即6a^2為36的倍數推得a^2被6整除,矛盾於a,b互質因此根號6是無理數,即根號2加根號3是無理數

請證明:根號三是無理數

2樓:風之鷂

^^1、假設根號3=p/q(p、q為互質整數),則p^2=3q^2

所以3整除p^2,因3是質數,所以3整除p,可設p=3t,則q^2=3t^2,所以3整除q

因此p和q有公約數3,與p和q互質矛盾,所以根號3是無理數

2、設x=根號3,則有方程x^2=3

假設x^2=3有有理數解x=p/q(p、q為互質整數),根據牛頓有理根定理p整除3,q整除1,所以p=1或3,q=1,從而x=1或3,顯然x=1或3不是方程x^2=3的根,矛盾.

3、設x=根號3=p/q,(p,q)=1,所以存在整數s,t使ps+qt=1

根號3=根號3*1=根號3(ps+qt)=(√**)s+(√3q)t=3qs+pt為整數,矛盾

拓展資料:

由無理數引發的數學危機一直延續到19世紀下半葉。2023年,德國數學家戴德金從連續性的要求出發,用有理數的「分割」來定義無理數,並把實數理論建立在嚴格的科學基礎上,從而結束了無理數被認為「無理」的時代,也結束了持續2000多年的數學史上的第一次大危機。

3樓:匿名使用者

^證明根號3是無理數,使用反證法

如果√3是有理數,必有√3=p/q(p、q為互質的正整數)兩邊平方:3=p^2/q^2

p^2=3q^2

顯然p為3的倍數,設p=3k(k為正整數)有9k^2=3q^2 即q^2=3k^2

於是q於是3的倍數,與p、q互質矛盾

∴假設不成立,√3是無理數

4樓:雄鷹

分析:1有理數的概念:

「有限小數」和「無限迴圈小數」統稱為有理數。

整數和分數也統稱為有理數。

所有的分數都是有理數,分子除以分母,最終一定是迴圈的。

2無理數的概念:無限不迴圈小數,可引申為「開方開不盡的數」。

3反證法的要領是假設一個明顯荒謬的結論成立,然後正確地證明原假設是錯誤的。

解:假設(√3)是有理數,

∵ 1<3<4

∴(√1)<(√3)<(√4)

即:1<(√3)<2

∴(√3)不是整數。

∵整數和分數也統稱為有理數,而(√3)不是整數

∴在假設「(√3)是有理數」的前提下,(√3)只能是一個分子分母不能約分的分數。

此時假設 (√3) = m/n(m、n均為正整數且互質,二者不能再約分,即二者除1外再無公因數)

兩邊平方,得:

m2 / n2 = 3

∴m2 是質數3的倍數

我們知道,如果兩個數的乘積是3的倍數,那麼這兩個數當中至少有一個數必是3的倍數。

∴由「m2 (m與m的乘積) 是質數3的倍數」得:正整數m是3的倍數。

此時不妨設 m = 3k(k為正整數)

把「m = 3k」 代入「m2 / n2 = 3」 ,得:

(9k2) / n2 = 3

∴3k2 = n2

即:n2 / k2 = 3

對比「m2 / n2 = 3「 同理可證

正整數n也是3的倍數

∴正整數m和n均為3的倍數

這與「m、n均為正整數且互質」相矛盾。

意即由原假設出發推出了一個與原假設相矛盾的結論,

∴原假設「(√3) = m/n(m、n均為正整數且互質,二者不能再約分,即二者除1外再無公因數)」是不成立的。

∴(√3) 不能是一個分子分母不能約分的分數

而已證(√3) 不是整數

∴(√3) 既 不是整數也不是分數,即(√3) 不是有理數。

∴(√3) 是無理數。

5樓:遲沛山告琳

方法一:假設根號3=p/q(p、q為互質整數),則p^2=3q^2

所以3整除p^2,因3是質數,所以3整除p,可設p=3t,則q^2=3t^2,所以3整除q

因此p和q有公約數3,與p和q互質矛盾,所以根號3是無理數

方法二:設x=根號3,則有方程x^2=3

假設x^2=3有有理數解x=p/q(p、q為互質整數),根據牛頓有理根定理p整除3,q整除1,所以p=1或3,q=1,從而x=1或3,顯然x=1或3不是方程x^2=3的根,矛盾。

方法三:設x=根號3=p/q,(p,q)=1,所以存在整數s,t使ps+qt=1

根號3=根號3*1=根號3(ps+qt)=(√**)s+(√3q)t=3qs+pt為整數,矛盾

6樓:樸卉吾嘉懿

^反證:假設根號3是有理數,則存在兩個互質整數m和n使得根號3=m/n.兩邊平方並整理得m^2=3n^2,

於是m是3的倍數,令m=3q,

代入上式整理得:n^2=3q^2,

故n也是3的倍數,這與m,n互質矛盾。故根號3是無理數。證畢。

怎樣證明根號3是無理數

7樓:**座小茶葉

用反證bai法。假設√3是有理數,du則任何一個zhi有理數都可以表示為既約

dao分數m/n(即內:m、n為整數,且互質容)因此√3=m/n,得3=m^2/n^2,即m^2=3*n^2,因此m^2含有3的因數,因此m含有3的因數

假設m=**,則:(**)^2=3*n^2,得n^2=**^2,因此n^2含有3的因數,因此n含有3的因數

所以,m、n均含有3的因素,與m、n互為質數矛盾,因此√3是無理數這是一個通用的證法,可以證明√2、√5、√6等等是無理數。

8樓:匿名使用者

^^:假設√3是

。1^2< (√3)^2<2^2

1<√3<2,所以√3不是整數,

設√3=p/q ,p和q

把 √3=p/q 兩邊平內方

3=(p^2)/(q^2)

3(q^2)=p^2

3q^2是3的倍數數,p 必定

容3的倍數,設p=3k

3(q^2)=9(k^2)

q^2=3k^2

同理q也是3的倍數數,

這與前面假設p,q

矛盾。因此√3是

。這是別人的答案

9樓:都夏煙梅海

^呵,試試來看假設√3是有理數,不妨令:源√3=baip/q 其中(p,q)=1

則有,p^du2=3q^2

因為zhi(p,q)=1,所以(p^2,q^2)=1故可dao得:3|p^2

得:3|p^2

故可設p=3k

由√3=p/q得√3=3k/q (k,q)=1得:q=3k^2

由上,同樣可證:3|q^2

因此,3是p^2與q^2的公約數

這與(p,q)=1矛盾。

綜上所述,√3為無理數。

注:(p,q)=1是p,q互質的意思。

如何證明根號3是無理數???????

10樓:淺唱湘雪

剛做過這種題目......我想想哈。

無理數是不能夠被寫成兩個整數比的

設根號3=a/b(a和b是互版質的整數,公約數權只有1)

則3=a2/b2

∴a2=3b2

可以得出a是3的倍數 ,設a=3n

∴(3n)2=3b2

這就跟a/b中a和b是互質的兩個整數相悖逆,因為a和b有公約數3,也就是用反證法的方式證明根號3是無理數

全部手打tat

11樓:匿名使用者

^方法一來:假設根號3=p/q(p、q為互質整數),源則p^2=3q^bai2

所以du3整除

zhip^2,因3是質dao

數,所以3整除p,可設p=3t,則q^2=3t^2,所以3整除q因此p和q有公約數3,與p和q互質矛盾,所以根號3是無理數方法二:設x=根號3,則有方程x^2=3

假設x^2=3有有理數解x=p/q(p、q為互質整數),根據牛頓有理根定理p整除3,q整除1,所以p=1或3,q=1,從而x=1或3,顯然x=1或3不是方程x^2=3的根,矛盾。

方法三:設x=根號3=p/q,(p,q)=1,所以存在整數s,t使ps+qt=1

根號3=根號3*1=根號3(ps+qt)=(√**)s+(√3q)t=3qs+pt為整數,矛盾

12樓:晁溫嶽雁

證明:若

3是有理bai數,則3=p/q;(p,q是du互素的整數zhi,即p,q的最大

dao約數是1)

則有3q=p;

則可令p=3k;(k大於專0的整數)

可得q=k;

但是k,3k的最大公約數為

屬k即p,q的最大公約數為k;

這與最大公數約為1矛盾。

故3不是有理數,即是無理數。

13樓:脫廷謙頻鵑

設根號3不是無理復

數,設制根號三=p/q(有理數可寫成分數形式,pq是互質的兩正整數)兩邊平方p^2=3q^2

p是3的倍數

設p=3m(m為正整數)

9m^2=3q^2

q^2=3m^2

q也是3的倍數

與pq互質相矛盾。所以根號3不是有理數。

14樓:軍毅應依薇

剛做種復

題目......我想制想哈

理數能夠寫兩整數比

設根號bai

3=a/b(ab互質整數

公約數du

1)則3=a2/b2

∴zhia2=3b2

a3倍數

設a=3n

∴(3n)2=3b2

跟a/bab互質兩整數相dao悖逆ab公約數3用反證式證明根號3理數全部手打tat

15樓:瑞嫚書香天

假設根號bai3是無理數,則根號3可以表示為duq/p(其中q.p互質zhi)

所以有3=q^dao2/p^2

q^2=**^2

顯然,q含有3這個約數.所以q^2是9的倍數.所以p^2是3的倍數只有含有3這個約數的平方才有3的倍數.

所以p也是3的倍數既然q.p都是3的倍數.與原先假設的,qp互質矛盾.

所以根號3是無理數.

16樓:匿名使用者

用反證法

假設根號

bai3是有理數,du則必然能寫成最簡分zhi數n/m,n與m為互質整數。

令 根號dao3=x

x的平內方=3=n的平方/m的平方

3為正整容數,同時也是有理數,n的平方與m的平方互質(由n與m為互質整數得出)即不存在公約數,則m的平方必為1(不然無法等於一個整數3) 3=n的平方=x的平方

推出根號3=x=n, 由於n為整數,則根號3也為整數,顯然是不對的,所以

根號3為無理數

證明根號3是無理數,怎麼證明根號三是無理數

反證法 假設 3是有理數。1 2 3 2 2 2 1 3 2,所以 3不是整數,設 3 p q p和q互質 把 3 p q 兩邊平方 3 p 2 q 2 3 q 2 p 2 3q 2是3的倍數數,p 必定3的倍數,設p 3k3 q 2 9 k 2 q 2 3k 2 同理q也是3的倍數數,這與前面假設...

如何證明根號三是無理數,如何證明根號3是無理數

分析 有理數的概念 有限小數 和 無限迴圈小數 統稱為有理數。整數和分數也統稱為有理數。所有的分數都是有理數,分子除以分母,最終一定是迴圈的。無理數的概念 無限不迴圈小數,可引申為 開方開不盡的數 反證法的要領是假設一個明顯荒謬的結論成立,然後正確地證明原假設是錯誤的。解 假設 3 是有理數,1 3...

如何證明根號2加根號3再加根號5是無理數

反證法 若根號2加根號3是分數 即整數與整數的比 或說是有理數吧 則平方以後也應是有理數 即5 2根號6也是有理數 即根號6是有理數 顯然根號6只能是分數,不妨設此分數約至最簡時為b a則a,b互質,否則還可約 6 b 2 a 2 即b 2 6a 2 所以b 2為6的倍數 即為2,3的倍數 所以b為...