複合函式的極限運演算法則定理,為什麼其中要有這個條件

2021-05-28 21:43:18 字數 4504 閱讀 4275

1樓:月光下的

劃線部分闡述了極限關於趨向的一個基本的規避。永遠逼近但是永遠取不到。

為什麼複合函式的極限運演算法則有g(x)不=u。 而複合函式的連續性就沒有這個條件 這兩個定理有什麼

2樓:嗚啦啦嗚吶吶

設f(u)當u=0時,f(u)=0,當u≠0時,f(u)=1,又g(x)=x*sin(1/x)(x≠0)

顯然有lim(x->0)g(x)=0,lim(u->0)f(u)=1,但是f(g(x))在x=0處沒有極限.

因為在0的任意小的去心鄰域內都有

回存在ξ答,使得g(ξ)=0.

這樣在0的任意小的去心鄰域內,f(g(x))=0和f(g(x))=1都可以取到,f(g(x))在x=0處沒有極限.

所以複合函式的極限定義該限制g(x)≠u。

3樓:回憶夢想

我從來別處看來的

設f(u)當u=0時源,f(u)=0,當u≠0時,f(u)=1,又g(x)=x*sin(1/x)(x≠0)bai

顯然有lim(x->0)g(x)=0,lim(u->0)f(u)=1,但是f(g(x))在x=0處沒du有極限.

因為在0的任意小的zhi去心dao鄰域內都有存在ξ,使得g(ξ)=0.

這樣在0的任意小的去心鄰域內,f(g(x))=0和f(g(x))=1都可以取到,f(g(x))在x=0處沒有極限.

所以複合函式的極限定義該限制g(x)≠u。.

4樓:匿名使用者

極限的抄話,一般是看去心鄰域中的過程。就比如說示性函式,在x<0為0,在x>=0為1,則在0點既有左極限又有右極限。和點的值沒有關係。

現在我們要看複合函式f(g(x))在x0的極限行為,舉個例子,我們就取g為上文的示性函式。那麼,x從負半軸趨向於0,那麼g趨向於0,若是g取到0,g在0點的函式值為1。然後極限性就不是原來的極限性了。

至於連續性,連續性是看包含心的鄰域的過程,因此就沒什麼忌諱了。

5樓:狼大荊棘

我們抄用極限複合加上那襲個條件推出連續複合。

極限為一個

值有兩種情況,一個是常量,一個是變數,常量是特殊的變數,對外函式意味著函式值與極限值相等,這就推出了連續複合定理,而不僅僅是極限複合定理。

要想不是常量,唯一辦法就是規定那個等式,這個等式意味著外函式取不到那個點,但我們並不是因為外函式取不到那個點才規定那個等式的,也就是說,外函式可以在那點有定義,但我們不會讓它取到那個點。

提問者弄錯了一件事情,不是極限多了一個條件,而是連續多了一個可以相等的條件。

所以相當於你在問我為什麼我不給你個蘋果,但我想說我的條件就是不給你蘋果,你質疑了一個條件,這是沒有意義的問題。

你真正想問的是如果我給了你一個蘋果會怎麼樣,連續複合定理已經告訴你一部分,在有定義的前提下,如果加上可以相等的條件,就不僅僅極限,還是特殊的極限,複合連續。如果外函式值與極限值不等,那極限就不存在。

6樓:匿名使用者

數列極限的定義裡沒有要求f(u0)

有定義,就是說f(x)定義域不一定要包含u0。如果g(x)=u0,則複合函式不一定有意義。因為f(u0)不一定有意義。

7樓:匿名使用者

我覺得g(x)≠u。是個中間結論,是由x屬於去心鄰域得出的,這就是為什麼最後半句話的句式為當......時,有......,「有」的意思是可知,帶有引出後面推論的意思。它作為前半句的結論的同時,也作為後半句的條件。

我也是個大一的,說的不對了多多包涵?

8樓:小石頭

你這個例子舉錯了吧 那個g(x)的值域不是r嗎 那複合的f(x)的定義不也是r嗎

複合函式極限運演算法則裡的條件

9樓:欲乘風歸去者

我想這個

問題也想了copy很久,我的看法是這個條件

是這個定理的必要條件,沒有這個條件這個定理是不成立的,就比如上面那個舉出來的分段函式的反例。這個定理其實關心的是在u0附近的複合函式的取值,至於g(x)=u0時,複合函式的取值則不是這個定理所關心的,因為f(x)可以在這一點連續,不連續,甚至還可以沒有意義,這就導致了複合函式在該點需要另外分析。

10樓:我的寶貝

x*sin(1/x)

當x不等於1/nπ時,x趨近於0時,此函式的極限並不是1,還是0,因為一個

無窮向量乘以一內個有界量還是無窮小容量

我想,你肯定是把x*sin(1/x)和(sinx)/x搞混淆啦,前者是x趨於無窮大的極限是1,而後者是x趨於0的極限是1

11樓:light冰楓

你根本也沒有說明白你的f(x)和g(x)是什麼?總之你說的不對;對於x*sin(1/x)它的極限就是0,無論內你取容 x等於或不等於1/nπ時

下面我就給你解釋一下為什麼要強調ψ(x)≠0,

其實是為了強調ψ(x)不能恆等於u0,否則會出現

如ψ(x)=1 (x∈r),f(x)=2 x=1 ; f(x)為分段函式 則顯然lim x→0ψ(x)=1,lim x→0f(ψ(x))=2

=x x≠1 但是lim u→1 f(u)=1≠ lim x→0f(ψ(x))

只要不恆等於u0就可以

如ψ(x)=sin(x),設u0=0,這個就符合這個法則的條件,雖然在(-2π,2π)的去心鄰域中存在ψ(x)=u0的點,看似與定義相悖,但是我們可以找到更小的去心鄰域如(-1/2π,1/2π),這就不存在ψ(x)=u0的點,再往深裡考慮,對於x0這點只要能夠找到一段很小的鄰域沒有ψ(x)=u0,就符合條件。

同理如果我們能夠找到一段x0的去心鄰域,ψ(x)恆等於u0,則就不符合條件。

12樓:匿名使用者

梳理如下:

第一個問題:一定要有條件「ψ(x)≠u0」。62616964757a686964616fe4b893e5b19e31333330353632

例1,ψ(x)=1 (x∈r),

f(u)為分段函式:當u≠1時,f(u)=u;當u=1時,f(u)=2,

取x0=1,則u0=1,【ψ(x)=u0】=1,lim(u→1)f(u)=1=a,lim(x→1)f(ψ(x))=f(1)=2,2≠1,

即lim(x→1)f(ψ(x))≠a,即定理1的結論不成立。

第二個問題:關於例子x*sin(1/x),

首先,這個函式是由兩個函式的乘積構成的:f(x)= x,g(x)=sin(1/x):f(x)*g(x)=x*sin(1/x),

而不是由兩個函式的複合構成的。

僅從這一點來說,把這個例子用在這裡並不合適。

不過,這其中的第二個函式sin(1/x)是由兩個函式的複合構成的:ψ(x)=1/x,f(u)=sinu。

其次,函式x*sin(1/x)當x→0時的極限確定是0,這是因為一個無窮小量乘以一個有界量還是無窮小量。

這個也可以通過x*sin(1/x)的影象來理解。

所以,關於例子x*sin(1/x),無論你取 x等於或不等於1/nπ,只要x→0,它的極限就是0。

對此,原問題中的陳述不正確。

從這一點來說,把這個例子用在這裡也不合適。

合適的例子是上面的例1。

第三個問題:細化一下,

在定理1中是說,「在x0的某去心鄰域內ψ(x)≠u0」,

也就是說,是在x0的附近成立ψ(x)≠u0就可以。

例如,ψ(x)=sinx (x∈r),

取x0=0,則u0=0,

【ψ(x)≠u0在x0的某去心鄰域內成立,比如在去心鄰域(-1/2π,1/2π)成立】

【而在x0的以遠,比如在去心鄰域(-2π,2π),ψ(x)≠u0就不成立】

這種情況屬於符合定理1中的條件「在x0的某去心鄰域內ψ(x)≠u0」。

如果不存在這樣的鄰域,則就不符合條件。

複合函式極限運演算法則的定理中,內函式為什麼不能等於其極限值?(同濟高數六版上 48頁)

13樓:匿名使用者

定理6中的條件(簡稱為)「g(x)≠u0」的必要性:

看這個例子:

g(x)=1 (x∈r),

f(u)為分段函式:當u≠1時,f(u)=u;當u=1時,f(u)=2,

取x0=1,則u0=1,【g(x)=u0】=1,lim(u→1)f(u)=1=a,lim(x→1)f(g(x))=f(1)=2,2≠1,

即lim(x→1)f(g(x))≠a,即定理6的結論不成立。

所以,一定要有條件「g(x)≠u0」。

14樓:匿名使用者

"且存在δ0 >0,當x屬於去心鄰域(x0,δ0)時,有g(x)不等於u0"這句話其實就是說δ0足夠小

見課本p32,定義1及自變數趨於有限值事函式的極限

看了還不明白可以繼續問

15樓:宋盡天良

看到p48倒數第九行的不等式。 若有 當x屬於去心鄰域(x0,δ0)時,有g(x)等於u0,如果f(u)在u=u0不連續,上述提到的不等式不一定成立。

利用極限的四則運演算法則求下列極限

先通分得 x 2 2x 8 x 3 8 x 2 x 4 x 2 x 2 2x 4 x 4 x 2 2x 4 取極限版後權 2 4 2 2 2 2 4 1 2 極限的四則運演算法則 都是充分不必要條件。解 設高度為x處的圓截面面積為s 則s與x的關係 s 1 x h 2 r 2s對x積分 得到s x ...

對數函式的運算性質,對數函式的運演算法則及公

一般地,如果a a 0,且a 1 的b次冪等於n,那麼數b叫做以a為底n的對數,記作logan b,其中a叫做對數的底數,n叫做真數。底數則要 0且 1 真數 0 並且,在比較兩個函式值時 如果底數一樣,真數越大,函式值越大。a 1時 如果底數一樣,真數越小,函式值越大。00且a 1時,m 0,n ...

極限的四則運演算法則中的能相加減的前提是什麼?記得有些題是不能分開的

分開之後,各自的極限存在 可以加減 只要極限存在 極限四則運演算法則的前提是什麼?什麼時候不能用 使用極限的四則運演算法則時,應注意它們的條件,當每個函式的極限都存在時,才可使用和 差 積的極限法則。當分子 分母的極限都存在,且分母的極限不為零時,才可使用商的極限法則。當有一個極限本身是不存在的,則...