微分方程式,微分方程怎麼由上式得出下式

2021-05-28 15:39:08 字數 2146 閱讀 7874

1樓:浪子_回頭

微分方bai程是伴隨著微積分學一起du

發展zhi起來的。微積分學的dao奠基人newton和leibniz的著作版中都處理過與微權分方程有關的問題。微分方程的應用十分廣泛,可以解決許多與導數有關的問題。

物理中許多涉及變力的運動學、動力學問題,如空氣的阻力為速度函式的落體運動等問題,很多可以用微分方程求解。此外,微分方程在化學、工程學、經濟學和人口統計等領域都有應用。

如何判斷一個微分方程是線性,還是非線性微分方程?!

2樓:陸宵

如果一個微分方程中僅含有未知函式及其各階導數作為整體的一次冪,則稱它為線性微分方程。可以理解為此微分方程中的未知函式y是不超過一次的,且此方程中y的各階導數也應該是不超過一次的。

線性微分方程是指關於未知函式及其各階導數都是一次方,否則稱其為非線性微分方程。

3樓:林清他爹

以二階微分方程為例(高階的以此類推):經過化簡,可以變形為這種形式的稱為線性微分方程:p(x)y"+q(x)y'+r(x)y=s(x) (其中,p(x),q(x),r(x),s(x)都是已知的x的函式式)

無論如何怎麼化簡,方程中都帶有y或者y的導數的非一次方的微分方程就是非線性微分方程。

例如y'y=y2,雖然y不是一次方,但是我通過等價變形可以變成y(y'-y)=0,即y=0或者y'-y=0,因為y和y'都是一次方,因此他們是線性微分方程。而他們的係數都是常數,所以可以稱之為常係數微分方程。

再如(sinx)y'-y=0,因為y'和y的次數都是1(含有x的函式項不算),所以是線性微分方程。而y'的係數是sinx,因此是變係數常微分方程。

再如y'y=1,無論如何化簡(例如把y除過去),都不能變成y'和y次數都是1的形式,因此該方程為非線性微分方程。

再加一句:線性微分方程都有解析解,就是可以寫成函式解析式y=f(x)的形式。但是非線性微分方程就很難說了。

一般來說,部分一階非線性微分方程有解析解。但是二階或二階以上的非線性微分方程很難有解析解。

4樓:解解龍

線性即(直觀的說,做題直接可以判斷的依據):

方程中不含交叉項,如:yy'、yy''、y'y''等方程中不含高次項,如:(y'')^2、y^3等方程不含有負次項,如:

1/y、1/y''等說白了就是不是這些東西(y、y'、y''、y'''...)的線性組合,還有例如什麼e^y+y''、siny'+y多了去了

ay+by''+cy'''...就是他們的線性的組合了總之不是這些東西的線性的組合,列寫出來即為非線性方程。

微分方程論是數學的重要分支之一。大致和微積分同時產生,並隨實際需要而發展。含自變數、未知函式和它的微商(或偏微商)的方程稱為常(或偏)微分方程。

中文名:微分方程

外文名:the differential equation數學範疇:高等數學

發明人:艾薩克·牛頓

所屬學科:數學

理論基礎:極限理論

5樓:pasirris白沙

所謂的線性微分方程 linear differential differentiation,其中

a、只能出現函式

本身,以及函式的任何階次的導函式;

b、函式本身跟所有的導函式之間除了加減之外,不可以有任何運算;

c、函式本身跟本身、各階導函式本身跟本身,都不可以有任何加減之外的運算;

d、不允許對函式本身、各階導函式做任何形式的複合運算,例如:

siny、cosy、tany、根號y、lny、lgx、y2、y3、y^x、x^y、、、、、

.若不能複合上面的條件,就是非線性方程 nonlinear differential differentiation..

6樓:給伱你卟要

如果微分方程對於未知函式及它的的各階導數的有理整式的整體而言是一次的,稱為線性微分方程。否則是非線性微分方程。

7樓:愛丞

微分方程階數就是未知量函式的導數的最高階。未知量函式及其各階導數都是一次的,即為線性的,否則就是非線性的。

微分方程怎麼由上式得出下式?

8樓:匿名使用者

可以直接這麼做,既然寫了x/y=u,相當於預設了y不能等於0,所以可以做分子。

微分方程怎麼由上式得出下式

可以直接這麼做,既然寫了x y u,相當於預設了y不能等於0,所以可以做分子。樑彎曲微分方程式是根據什麼基本假定匯出的,有什麼物理意義,適用範圍怎樣 近似的原因在於作了小撓度變形的假定,因而在其變形的曲率表示式中近似認為y 0,這樣就簡化了公式,從而得到了樑的撓曲線近似微分方程。這是導致近似的根本原...

關於全微分方程,關於全微分方程的解

不可能對,您的理解有問題,沒明白全微分方程的實質。全微分方程實際上是方程可以寫成d f x,y 0的形式,然後對兩邊同時取積分,解得f x,y c為原方程的解,例如2xdx 3y 2 方程可以化為d x 2 d y 3 0等價於d x 2 y 3 0直接積分得x 2 y 3 c,因此原方程也可以直接...

求下列微分方程的通解,微分方程的通解怎麼求?

圖中的解法就可以抄了,直接分離變數得到 sec ydy tany 3 e x dx e x 2 d tany tany 3d e x 2 e x 2 兩邊積分得到 ln tany 3ln e x 2 c c為任意常數 兩邊同時作自然對數底e的指數,消去對數函式得到 tany k e x 2 k e ...