當區間邊界點導數為零這一點是駐點嗎

2021-03-19 18:19:04 字數 4250 閱讀 4672

1樓:匿名使用者

準確說:區間邊界上導數也不存在,因為導數要求從兩側逼近那個極限都存在

糾結這個沒有啥意義,駐點的作用是求極值點,而對於有邊界的區間上,無論他算不算駐點,我們都要檢查它的大小,所以數學上也沒有這麼嚴格拷問過

導數不存在的點是駐點嗎

2樓:匿名使用者

不是,導數為0的點是駐點。

在某點導數不存在,有三種可能:

1、函式影象在此點有尖角。尖角兩側的斜率不一樣,所以不可導。

2、函式影象在此點中斷,不但中斷,而且兩側的極限也不相等,甚至是根本不存在。

3、函式影象既連續,又光滑,但是該點的切線垂直於x軸,我們也說該點導數不存在。

導數存在的充要條件:函式導數存在的充要條件是在該點左右導數均存在且相等。

設函式y=f(x)在點x0的某個鄰域內有定義,當自變數x在x0處有增量δx,(x0+δx)也在該鄰域內時,相應地函式取得增量δy=f(x0+δx)-f(x0);如果δy與δx之比當δx→0時極限存在,則稱函式y=f(x)在點x0處可導。

擴充套件資料

相關知識:

臨界點(critical point):導數為零或者不存在的點。

駐點(stationary point):導數為零的點。

極值點(relative extrema):區域性最大值或者最小值。該點前後一階導符號發生變化。一階導由大於零變為小於零,為極大值;由小於零變為大於零,為極小值。

1、臨界點包括駐點和導數不存在的點。

2、極值點要在臨界點裡找,臨界點不一定為極值點。比如y=x^3,x=0處為臨界點,但不是極值點。

3、判斷臨界點是否為極值點的唯一原則——在該點前後函式一階導符號(即函式單調性)是否發生變化。

4、臨界點、駐點和極值點與函式的一階導有關,拐點與函式的二階導有關,拐點前後二階導符號發生變化。

3樓:嗯崔達布

不是,駐點又稱為平穩點、穩定點或臨界點(critical point)是函式的一階導數為零,即在「這一點」,函式的輸出值停止增加或減少。

在某點導數不存在,有三種可能:

1、函式影象在此點有尖角。尖角兩側的斜率不一樣,所以不可導。

2、函式影象在此點中斷,不但中斷,而且兩側的極限也不相等,甚至是根本不存在。

3、函式影象既連續,又光滑,但是該點的切線垂直於x軸,我們也說該點導數不存在。

函式的一階導數為0的點。對於多元函式,駐點是所有一階偏導數都為零的點,所以前提是函式一階偏導數為零的點才是駐點。

4樓:demon陌

不是,為0的點是駐點。

在某點導數不存在,有三種可能:

a、圖形在此點有尖尖角。尖角兩側的斜率不一樣,所以不可導。

b、圖形在此點中斷,不但中斷,而且兩側的極限也不相等,甚至是根本不存在。

c、影象既連續,又光滑,但是該點的切線垂直於x軸,我們也說該點導數不存在。

例如圓的最左、最右兩點。

可導函式f(x)的極值點一定是它的駐點,不可導的點可以是極值點,但它不是駐點.但反過來,函式的駐點不一定是極值點。

函式f(x)的:

1、極值點不一定是駐點。如y=|x|,在x=0點處不可導,故不是駐點,但是極(小)值點。

2、駐點也不一定是極值點。如y=x³,在x=0處導數為0,是駐點,但沒有極值,故不是極值點。

5樓:楊風遊

1、在某點導數不存在,有三種可能:

a、圖形在此點有尖尖角。尖角兩側的斜率不一樣,所以不可導;

b、圖形在此點中斷,不但中斷,而且兩側的極限也不相等,甚至是根本不存在;

c、影象既連續,又光滑,但是該點的切線垂直於x軸,我們也說該點導數不存在,

例如圓的最左、最右兩點。

2、駐點是指一階導數為0的點,英文是stationary point,也就是該點的切線平行於x軸。

駐點可能是極大值點,也可能是極小值點。

區別:導數不存在,是無法計算導數;駐點是導數為0的點,為0,就是存在,它是特殊的導數值。

6樓:匿名使用者

為0的點是駐點,這個在學習尾猿裡有講過

7樓:shine嗨起來

函式的一階導數為0的點

駐點是一階導數為0 或一階導不存在的點嗎

8樓:千里揮戈闖天涯

函式的駐點:

駐點:一階導數為零。

可導函式f(x)的極值點一定是它的駐點,不可導的點可以是極值點,但它不是駐點.但反過來,函式的駐點【不一定】是極值點.

在微積分,駐點(stationary point)又稱為平穩點或臨界點(critical point)是函式的一階導數為零,即在這一點,函式的輸出值停止增加或減少。

9樓:將來

駐點是一階導數為零的點,有可能是極值點,考慮左右一階導數不變號的情況,導數不存在的點也可能是極值點,不是駐點,不要混淆,所以駐點不一定是極值點,極值點也不一定是駐點

f'(x)=o時的點x一定是駐點嗎?

10樓:匿名使用者

函式的導數為0的點稱為函式的駐點,駐點可以劃分函式的單調區間。所以f'(x)=o時的點x一定是駐點。

駐點並不是點,而是和極值點相似,代表著這一點的x值。因此,駐點不一定是極值點,極值點也不一定是駐點。

若f(a)是函式f(x)的極大值或極小值,則a為函式f(x)的極值點,極大值點與極小值點統稱為極值點。極值點是函式影象的某段子區間內上極大值或者極小值點的橫座標。極值點出現在函式的駐點(導數為0的點)或不可導點處(導函式不存在,也可以取得極值,此時駐點不存在)

如何判定駐點:只需要函式在某點一階可導,且一階導數值為0。

如何判定極值點:取極值的點,一階導數為0或導數不存在。

1、一階導為0時,若一階導兩端異號為極值點。

2、二階可導時,一階導為0,二階導不為0則為極值點,二階導大於0極小值,二階導小於0極大值。

擴充套件資料:

與拐點區別

函式的平穩點的術語可能會與函式圖的給定投影的臨界點相混淆。

「臨界點」更為通用:功能的平穩點對應於平行於x軸的投影的圖形的臨界點。另一方面,平行於y軸的投影圖的關鍵點是導數不被定義的點(更準確地趨向於無窮大)。

因此,有些作者將這些**的關鍵點稱為「關鍵點」。

拐點是導數符號發生變化的點。拐點可以是相對最大值或相對最小值(也稱為區域性最小值和最大值)。如果函式是可微分的,那麼拐點是一個固定點;然而並不是所有的固定點都是拐點。

如果函式是兩次可微分的,則不轉動點的固定點是水平拐點。例如,函式 x3在x = 0處有一個固定點,也是拐點,但不是轉折點。

在駐點處的單調性可能改變,在拐點處凹凸性可能改變。

與極值點區別

可導函式f(x)的極值點必定是它的駐點,但反過來,函式的駐點卻不一定是極值點。

函式1、極值點不一定是駐點。如y=|x|,在x=0點處不可導,故不是駐點,但是極(小)值點。

2、駐點也不一定是極值點。如y=x³,在x=0處導數為0,是駐點,但沒有極值,故不是極值點。

11樓:drar_迪麗熱巴

f'(x)=o時的點x一定是駐點。

函式的導數為0的點稱為函式的駐點,駐點可以劃分函式的單調區間,所以f'(x)=o時的點x一定是駐點。

在微積分,駐點(stationary point)又稱為平穩點、穩定點或臨界點(critical point)是函式的一階導數為零,即在「這一點」,函式的輸出值停止增加或減少。對於一維函式的影象,駐點的切線平行於x軸。對於二維函式的影象,駐點的切平面平行於xy平面。

函式的平穩點的術語可能會與函式圖的給定投影的臨界點相混淆。

「臨界點」更為通用:功能的平穩點對應於平行於x軸的投影的圖形的臨界點。另一方面,平行於y軸的投影圖的關鍵點是導數不被定義的點(更準確地趨向於無窮大)。

因此,有些作者將這些**的關鍵點稱為「關鍵點」。

拐點是導數符號發生變化的點。拐點可以是相對最大值或相對最小值(也稱為區域性最小值和最大值)。如果函式是可微分的,那麼拐點是一個固定點;然而並不是所有的固定點都是拐點。

如果函式是兩次可微分的,則不轉動點的固定點是水平拐點。

12樓:匿名使用者

不一定。如y=x^3在x=0處導函式為0,但它在此時的單調性沒發生變化。(駐點:導函式為0的點,且在此時單調性也要發生改變)

當知道函式,然後求導得到了增區間,那麼在什麼情況下,端點可以用中括號而不用小括號

當兩個端點的數值在原函式的定義域內就可以用中括號,如果不在定義域內的話就只能用小括號了。用逐項求導逐項積分的方法,得到的和函式,它原來的級數的收斂區間包括端點,但是求完和函式沒了,這是為 冪級數逐項求導或積分後所得的冪級數與原級數有相同的收斂半徑但不包括端點 如果原級數在端點處收斂,所求的和函式在端...

分段函式求導,分段區間用求導法則,分段點用導數定義。求導法則和導數定義分別是什麼

一般的求du導zhi法則 已知 daof x g x 內有 f x g x f x g x f x 容g x f x g x f x g x f x g x f x g x f x g x g x 2 分段函式求導,一定要在區間端點處用求導定義求嗎?如果分段函式在分段點處是連續的,則可以套用求導公式...

某函式在某區間可導,能說明什麼,函式在某點可導意味著什麼

在某區間可導就是說明導數存在啊.其實通過可導可以得到很多條件,關鍵看你要用什麼 這個條件一般在抽象函式的題目中給出,這樣你就可以直接使用f x 這個符號了 否則只能根據導數的定義寫出它的極限表示式,最後判斷導數是否存在 可導的話 1.在該區間 函式連續的 2.是單調函式 說明在該區間,函式是連續的!...