1樓:閒來看看題
因為0的0次冪沒有意義。
希望採納
冪函式 指數是什麼的時候 x不能等於0?
2樓:廬陽高中夏育傳
指數小於零時,不過(0,0)點,所以當指數為負數時,x不能為零;
冪函式中a=0時為什麼x不能為0
3樓:匿名使用者
因為0的0次方是懸而未決的,在某些領域定義為1、某些領域不定義(無意義)。
當a不等於0時x可以為0但不是隻能為0,他只是冪函式的一個具體函式值f(0)而已
4樓:急sd躁
這就像0不能作除數一樣,是數學定義問題,望採納。
冪函式的底數x能不能為0?指數α能不能為0
5樓:展哥待你超神
並沒有說函式底數不能為0啊
冪函式是基本初等函式之一。
一般地.形如y=x^α(α為有理數)的函式,即以底數為自變數,冪為因變數,指數為常數的函式稱為冪函式。例如函式y=x^0、y=x^1、y=x^2、y=x-^1(注:
y=x-1=1/x y=x0時x≠0,因為0不可以當分母)等都是冪函式
指數只有在x=0時,才不能為0
**:網頁連結
6樓:匿名使用者
x不能為0,阿爾法為0都等於1
7樓:2018的阿修羅
y=x^a,a為有理數,有理數分為整數,分數,零,0屬於有理數,所以a=0,y=x^0=1,x/=0 答:冪函式的指數可以為零的。
冪函式裡面a=0的時候為什麼x不能為0但a≠0 x就可以為0
8樓:du知道娘
分子可以為零 分母不可以為零 0可以當除數不可以被除 這個應該是高二的數學 忘得差不多了
9樓:蒯桂枝祝燕
x就可以為0
題目 為什麼冪函式的底數在某些情況下可以為0指數函式的底數卻不可以為0? 10
10樓:丿star丨tao丨
如果在高中範圍內討論,是很簡單的.因為定義規定的.
冪函式是y=x的多少次冪.設為a吧.那麼a幾種情況.
把a從負無窮增加到正無窮
a小於零的話,首先是a小於等於-1.就是y=(x的多少次方)分之一,就是圖形為雙曲線的影象.
如果a是0.什麼數的0次方還是1.所以是個直線.
但是,注意.再學0次冪的時候,書上有幾行黑色的字.有一條寫的很明顯,0沒有0次冪.
所以這個情況下,影象不是一條完整的直線,缺少1個點(0,1).
如果a是大於0小於1的情況,那就是y=x的根號幾次冪.大家都知道,再實數範圍內,a偶數情況下,底是不能為負數的,根號下負數就成了虛數了.所以這個時候的影象是不太完整的單調冪函式影象
如果a是等於1的.y=x是一次函式,直線.
如果a是大於1的,影象是個拋物線
再說回來,a小於0並且大於-1時.時說法最多的.因為他相當於y=(幾次根號下的x)整體分之1
所以根號下的x不能是0否則分母為零.另外偶數根號下的x還不能是負數.
其中x是自變數,是可以有定義域的,就是說我們可以規定他取多少值,比如偶數次根號下的東西,就是不能為負數.那麼x就大於等於0了.函式是考慮一個數變化,另一個相關變數也跟著變化的關係的.
如果一個數都沒意義了,還考察他的相關量怎麼跟著變化,就沒更沒意義了.其中的a是固定的,比如你確定了a是什麼範圍內的一個數.那麼a必須先固定下來.
然後才開始算函式.x是可以隨便變化的.
以上就是冪函式.另外指函式也是規定了的.首先就規定了指數函式的底是大於零的.並且教科書上說的很明顯,高中部分不討論.函式是y=a的x次方.這個時候a是固定的
x變化.a分幾個情況
1.a小於1大於0,左高右低,穿過(0,1)
2.a=1,1的多少次冪都是1.就是一條直線.
3.a大於1,左低右高的曲線.
你要是非得討論a=0的情況,也可以.一個數的幾次冪,相當於他自己乘以自己幾次.3次方就乘3次,n次方就n次.0乘以自己還是0.所以0的正數次方,就還是0.
0的0次方,定義裡說了沒有.0的負數次方,相當於0的正數次方後,整體取倒數.但是0不能是分母,所以沒有.
也就是說,這種情況下,影象就是x軸的正半軸不包括原點.
冪函式指數為什麼的時候x不能等於
冪函式指數為0的時候 x不能等於0 因為0的0次冪沒有意義.冪函式 指數為什麼的時候 x不能等於0?因為0的0次冪沒有意義。希望採納 冪函式 指數是什麼的時候 x不能等於0?指數小於零時,不過 0,0 點,所以當指數為負數時,x不能為零 題目 為什麼冪函式的底數在某些情況下可以為0指數函式的底數卻不...
指數函式的指數為什麼大於零且不等於
zz 在指數函式y a x中來 當a 0時,若x 0,則無論 源x取何值 bai,a x恆等於0 若x 0,則a x無意義.當a 0時,如duy 2 x,對x取任何zhi值,比如說a為 1 那麼 1的1次冪是dao 1 2次冪是 1 3次冪是 1 但是 1的1.5次冪就是不存在的,如果底為負數,那麼...
指數函式底數為什麼不能是負數,如果是負數會怎樣
底數是負數,會可能導致定義域不連續 如y 2 x 高中階段學習的函式一般都是連續函式 fan飯要一口一口吃,數學有個基礎,範圍 小學只學到自然數 中學學正負 實數有理無理 高中學虛數 複合數 指數函式的底數為什麼不能小於0 1,首先考察函式f x 0 x的特性 定義域 0,值域 2,f x 0 x與...