B的行向量組與列向量組各是什麼關係

2021-05-30 04:31:52 字數 4404 閱讀 6891

1樓:匿名使用者

b的行向量組可由a的行向量組表示。

.這個列向量組看不出有什麼關係,

因為他們兩個的列向量組的維數可能不一樣,

但行向量組的維數一定相同

什麼叫行向量組與列向量組?

2樓:demon陌

行向量組指的是矩陣每行構成一個向量,所有行構成的向量的整體稱為一個行向量組

列向量組指的是矩陣每列構成一個向量,所有列構成的向量的整體稱為一個列向量組

例如:  給你一個矩陣a

a =1  2  3

4  5  6

則a的行向量組為: (1,2,3), (4,5,6)a的列向量組為:  (1,4)',(2,5)', (3,6)'

擴充套件資料:

單位列向量,即向量的長度為1,其向量所有元素的平方和為1。

行向量的轉置是一個列向量,反之亦然。

所有的行向量的集合形成一個向量空間,它是所有列向量集合的對偶空間。

在數學中,向量(也稱為歐幾里得向量、幾何向量、向量),指具有大小(magnitude)和方向的量。它可以形象化地表示為帶箭頭的線段。箭頭所指:

代表向量的方向;線段長度:代表向量的大小。與向量對應的只有大小,沒有方向的量叫做數量(物理學中稱標量)。

向量的記法:印刷體記作粗體的字母(如a、b、u、v),書寫時在字母頂上加一小箭頭「→」。 如果給定向量的起點(a)和終點(b),可將向量記作ab(並於頂上加→)。

在空間直角座標系中,也能把向量以數對形式表示,例如oxy平面中(2,3)是一向量。

在物理學和工程學中,幾何向量更常被稱為向量。許多物理量都是向量,比如一個物體的位移,球撞向牆而對其施加的力等等。與之相對的是標量,即只有大小而沒有方向的量。

一些與向量有關的定義亦與物理概念有密切的聯絡,例如向量勢對應於物理中的勢能。

不過,依然可以找出一個向量空間的基來設定座標系,也可以透過選取恰當的定義,在向量空間上介定範數和內積,這允許我們把抽象意義上的向量類比為具體的幾何向量。

3樓:車掛怒感嘆詞

「行向量就是橫著寫,比如(1,2,3,4) 列向量就是豎著寫.比如(1 2 3) 」

什麼叫行向量組與列向量組

4樓:我攻堅克難

如果一個向量組裡面的元素為一行,則為列向量組,例如(x1,x2,x3,x4),其每一列的元素都合成了一個元素,反之就是行向量組。

5樓:白羊向日葵王子

行向量就是橫著寫,比如(1,2,3,4)

列向量就是豎著寫.比如(123)

矩陣與向量組有什麼關係 區別

6樓:匿名使用者

一、區別

(一)含義不同

1、向量組是由若干同維數的列向量(或同維數的行向量)組成的集合。

2、矩陣是一個按照長方陣列排列的複數或實數集合,由向量組構成。

(二)特點不同

1、向量組是有限個相同維數的行向量或者列向量,其中向量是由n個實陣列成的有序陣列,是一個n*1的矩陣(n維列向量)或是一個1*n的矩陣(n維行向量)。

2、矩陣是由m*n個數排列成m行n列的數表。

(三)等價的含義不同

1、兩個矩陣a與b等價指的是a可以通過有限次初等變換變成b。兩個不同型矩陣是不可能等價的。

2、兩個向量組等價指的是它們能夠互相線性表示,它們各自所含向量的個數可能是不一樣的。

二、兩者的關係

1、向量就是n個數排成一排,向量是一維的。

2、矩陣是二維的,矩陣可以看做是由向量組構成,把矩陣看成是一行一行的,那麼每一行就是行向量組;把矩陣看成是一列一列的,那麼每一列就是列向量組。

3、向量組的秩等於它構成的矩陣的秩。

7樓:匿名使用者

矩陣與向量組的關係:矩陣是一組列(行)向量組成的新的複合向量的展開式。

矩陣與向量組的區別:

一、性質不同

1、矩陣:是一個按照長方陣列排列的複數或實數集合。

2、向量組:兩個及兩個以上向量,按照一定的關係集合在一起形成的向量組合,就叫向量組。

二、特點不同

1、矩陣:矩陣的特徵值和特徵向量可以揭示線性變換的深層特性;變換矩陣的行數等於v的維度,變換矩陣的秩等於值域r的維度。

2、向量組:向量組的任意兩個極大無關組等價;兩個等價的線性無關的向量組所含向量的個數相同;等價的向量組具有相同的秩,但秩相同的向量組不一定等價。

8樓:匿名使用者

答:同一本質的不同形式。

本質:可以互相等效。可以在任何疇上借用和代用對方的形式和方法來解題和思考問題。

a本質也是可以從多個方面討論的。略

如相應的矩陣和向量組,秩相同,對稱性相同,線性結構與線性性質相同。

同時,我們也可以因為不同形式的描述,得到同一本質的性質的不同形式,利於在不同思維下產生的結果的互相參照。

有些時候,兩個完全同構和等效的領域,由於直觀性與資訊轉換的代價,造成不均衡發展。於是,互相借鑑參照互補,最終趨於大同統一,二者均得以成熟。

有時,一個區域中開發出了新的天地,推廣了,很多東西在高的觀點下找到了完美的新形式,疑問得到進一步的深層解決;

而不知道的人,就不能借鑑和認識到大範圍與子範圍的關係,更無法應用到另一曾經的等效領域中去。

其實,最高的境界是自知且知人,自度也度人。這是人學,也是佛學,哲學,數學,萬般學問都是如此。

b由於本質相同,所以形式上的區別,實際上就是討論形式的對應構造與對立轉化。

矩陣是m行n列的數表,可視為m個行向量的序列,即m元的有序行向量組;列類似(注:即將字元 (m,行)<-->(n,列)交換後的命題亦成立)。

[列]向量組是若干同維的列向量的序列,m元n維列向量的序列對應一個n*m矩陣。行類似。

下面給出幾個例子,拋磚引玉,啟迪思考。

例一複數集(包括高斯整數,軸整數)在座標軸上的實部與虛部(行列標軸)方向,以右和上為正;

高斯整數a=1+i 關於 直線/: y=x的自對稱性;

高斯整數b=(1+2i),c=(2+i)關於/[互]對稱

而二元矩陣的行列標(軸)以右和下為正。[自]對稱矩陣a=a',是關於直線\: y+x=0的。

它們的共同本質是,對稱軸(也具有手性,方向性,旋性)平分二軸上的同向向量所闢的區域。

下面給出複數集與二階方陣的一種(注意,可以有多種設定方案)對應.

一種常見的方案是:

以二階么陣e與實數1對應,四階冪么陣i與複數i對應,於是矩陣與複數就形成了一一對應。

四階冪么陣,即二階冪負么陣的例子:

i=0 1

-1 0

它的自乘i*i=-e.(矩陣的乘法的快速理解見例二)

1+i對應的矩陣a=

1 1

-1 1

此時a是關於/對稱的。為什麼不是\對稱呢?

1+2i對應矩陣b=

1 2-2 1

2+i對應矩陣c=

2 1-1 2

的對稱性如何理解呢?用這裡的旋轉,對稱,各次么數的旋轉定位,即可以知道對稱性的本質.

事實上,我們看到,1與i關於/對稱的同時,也有一個四分圓周旋轉,於是對稱軸(鏡子)\旋轉為了/.同時,四次么數i和1的二分旋轉,分別是-1和1.

這恰好對應著四次么陣i時的兩個對角元.因此,本質相同的東西,不同的形式產生的結果的表現形不同,難易程度不同.這正如不同的編碼或密碼體系對於相同內容的東西的轉化.

另外,形式又可以具有他的特定本質.或者說,沒有完全同質的東西,同與不同,在於一心,即分別心.

而且,本質的理解,也隨著思想境界(即思慮的維度,其實是很具體的)的不同也有同.比如向量(0)與(0,0),如果只看到一維,那麼根本不知道他們的區別;如果不能感受0元,就對它們都無所知.

而知道有高維的存在者,知道他們可能有相同的本質; 洞悉本維者,可以確認它們具有相同的本質; 洞悉二維者,可以知道,它們在一維上本質相同,而二維上不是一回事;

而貫通向量元無窮組(0),(0,0),...,(0,...,0), (0...(佛學的萬字元號),0)者,一念之間,知道本質的同與不同,本無分別.

汝強作分別,即是分別; 無分別心,則無分別.存乎一心,是謂化境.

下面內容不太成熟,但可以啟迪您的思考,不會產生誤導.有些是我的**和直觀,還有興之所致的行文沒有斟酌,請發揮,請指正,別小氣,別客氣.

太長了寫不下,寫到文章中去了.

9樓:匿名使用者

矩陣是m行n列的數表

向量組是若干個同維數的列向量所組成的集合

有限個向量的有序向量組可以與矩陣一一對應

其實差不多一樣的 可以理解為矩陣的不同表示方法

10樓:匿名使用者

向量組的秩和矩陣的秩等也有關係。。還有一個方程可以用矩陣表示,也可表示為向量的線性組合等等

什麼是矩陣的行向量組等於列向量組的秩

矩陣的秩為最高階子式 最高階子式為m m的方陣 列向量組與行向量組的秩的區別?如一個m n m陣的秩等於列向量組的秩也等於行向量組的秩的證明 1 定義 矩陣的秩 指非零子式的最高階數 向量組的秩 指最大無關組中向量的個數 2 證明 先證明矩陣的秩等於列向量組的秩 設矩陣a a 11,a 1n a m...

矩陣行向量組的秩等於列向量組的秩等於矩陣的秩,那我寫矩陣 1,2,3 它列向量組秩等於3,ha

列向量組的秩也是 1 2,3 可由 1 線性表示 呃,你確定它的列向量秩是3麼?請問老師,為什麼 矩陣的秩等於它的列向量組的秩,也等於它的行向量組的秩 首先,因為矩陣的秩就是定義為行向量組的秩 也可以定義成列向量組的秩 其次,矩陣的秩定義為它的行向量的秩。因為有結論 轉置矩陣與原矩陣有相同的秩。所以...

兩個n階矩陣行向量組等價,那列向量組等價嗎

既然都是 n 階方陣,行向量組等價,說明它們的秩相等,那麼列向量組也等價 兩個n階矩陣行向量組等價,那列向量組等價嗎?這不一定 a,b 行向量組等價 存在可逆矩陣p 滿足 pa ba,b 列向量組等價 存在可逆矩陣p 滿足 ap b反例 1 2 3 4 0 0 b 1 2 0 0 3 4 矩陣行向量...