什麼是矩陣內積,什麼叫矩陣的內積

2021-08-09 07:12:15 字數 5502 閱讀 6248

1樓:河傳楊穎

矩陣的內積參照向量的內積的定義是:兩個向量對應分量乘積之和。

比如: α=(1,2,3), β=(4,5,6)

則 α, β的內積等於 1*4 +2*5 + 3*6 = 32

α與α 的內積 = 1*1+2*2+3*3 = 14

設ann=[aij](其中1<=i,j<=n),bnn=[bij](其中1<=i,j<=n);

則矩陣a和b的內積為c1n=[∑(i=1到n求和)aij*bij](其中1<=i,j<=n)。

此時內積c1n為1行,n列的矩陣。

舉例子矩陣a和b分別為:

[1 2 3]

[4 5 6]

[7 8 9]

和[9 8 7]

[6 5 4]

[3 2 1]

則內積為:

[1*9+4*6+7*3 2*8+5*5+8*2 3*7+6*4+1*9] = [54 57 54]

設a是n階方陣,如果數λ和n維非零列向量x使關係式ax=λx成立,那麼這樣的數λ稱為矩陣a特徵值,非零向量x稱為a的對應於特徵值λ的特徵向量。式ax=λx也可寫成( a-λe)x=0。這是n個未知數n個方程的齊次線性方程組,它有非零解的充分必要條件是係數行列式| a-λe|=0。

若λ是可逆陣a的一個特徵根,x為對應的特徵向量,則1/λ 是a的逆的一個特徵根,x仍為對應的特徵向量。

若 λ是方陣a的一個特徵根,x為對應的特徵向量,則λ 的m次方是a的m次方的一個特徵根,x仍為對應的特徵向量。

設λ1,λ2,…,λm是方陣a的互不相同的特徵值。xj是屬於λi的特徵向量( i=1,2,…,m),則x1,x2,…,xm線性無關,即不相同特徵值的特徵向量線性無關。

2樓:夢色十年

設ann=[aij](其中1<=i,j<=n),bnn=[bij](其中1<=i,j<=n);

則矩陣a和b的內積為c1n=[∑(i=1到n求和)aij*bij](其中1<=i,j<=n)。

特別注意,此時內積c1n為1行,n列的矩陣。

舉例子矩陣a和b分別為:

[1 2 3]

[4 5 6]

[7 8 9]

和[9 8 7]

[6 5 4]

[3 2 1]

則內積為:

[1*9+4*6+7*3 2*8+5*5+8*2 3*7+6*4+1*9] = [54 57 54]

擴充套件資料

在數學中,數量積(dot product; scalar product,也稱為點積)是接受在實數r上的兩個向量並返回一個實數值標量的二元運算。它是歐幾里得空間的標準內積。

兩個向量a = [a1, a2,…, an]和b = [b1, b2,…, bn]的點積定義為: a·b=a1b1+a2b2+……+anbn。 使用矩陣乘法並把(縱列)向量當作n×1 矩陣,點積還可以寫為:

a·b=a*b^t,這裡的b^t指示矩陣b的轉置。

3樓:匿名使用者

參照向量內積。

比如n維方陣a,可看作n個向量組成的向量簇,a1·a1。

矩陣計算則為a'a。即為a的轉置乘a

什麼叫矩陣的內積

4樓:秦桑

矩陣的內積參照向量的內積的定義是 兩個向量對應分量乘積之和.

比如: α=(1,2,3), β=(4,5,6)則 α, β的內積等於 1*4 +2*5 + 3*6 = 32α與α 的內積 = 1*1+2*2+3*3 = 14.

拓展資料:

內積(inner product),又稱數量積(scalar product)、點積(dot product)是一種向量運算,但其結果為某一數值,並非向量。其物理意義是質點在f的作用下產生位移s,力f所做的功,w=|f||s|cosθ。

在數學中,數量積(dot product; scalar product,也稱為點積)是接受在實數r上的兩個向量並返回一個實數值標量的二元運算。它是歐幾里得空間的標準內積。 兩個向量a = [a1, a2,…, an]和b = [b1, b2,…, bn]的點積定義為:

a·b=a1b1+a2b2+……+anbn。 使用矩陣乘法並把(縱列)向量當作n×1 矩陣,點積還可以寫為: a·b=a*b^t,這裡的b^t指示矩陣b的轉置。

5樓:珠海

答:設ann=[aij](其中1<=i,j<=n),bnn=[bij](其中1<=i,j<=n);

則矩陣a和b的內積為c1n=[∑(i=1到n求和)aij*bij](其中1<=i,j<=n)。

他別注意,此時內積c1n為1行,n列的矩陣。

舉例子矩陣a和b分別為:

[1 2 3]

[4 5 6]

[7 8 9]

和[9 8 7]

[6 5 4]

[3 2 1]

則內積為:

[1*9+4*6+7*3 2*8+5*5+8*2 3*7+6*4+1*9] = [54 57 54]

6樓:匿名使用者

參照向量內積。

比如n維方陣a,可看作n個向量組成的向量簇,a1·a1。

矩陣計算則為a'a。即為a的轉置乘a

7樓:長空一浪

我在matlab的quick start章節看到了這條:you can perform standard matrix multiplication, which computes the inner products between rows and columns, 這句的意思是做矩陣的標準乘法,也就是要計算行向量和列向量的內積。不是矩陣內積。

8樓:匿名使用者

廣義來講是相同大小的矩陣每個對應位置相乘後相加,得到一個實數

內積是什麼?

9樓:匿名使用者

如果有兩個向量:

a:(x1,x2,...,xn)

b:(y1,y2,...,yn)

那麼a和b的內積為:

x1y1+x2y2+...+xnyn

就是對應項相乘在求和,算出來是一個數

10樓:神遊飛天

內積在有限維實內積空間裡的度量矩陣個對稱正定

雙線性型

內積在有限維復內積空間裡的度量矩陣是hermite矩陣,是

一個半線性型:對於第一個向量線性,第二個向量共軛線性(或者對於第一個向量共軛線性,第二個向量線性)

說白了,設域f上的線性空間v,狹義內積其實就是從線性空間(v,v)->f的對映,滿足4條式子即可,且該線性空間具有長度,角度,距離等概念。

廣義內積:域f上線性空間v上的一個對稱/反對稱雙線性型函式f稱為v上的一個內積(無正定性,沒有長度,角度,距離等概念),指定了對稱雙線性型的內積的線性空間叫做正交空間;指定了反對稱雙線性型的線性空間叫做辛空間

11樓:縱橫豎屏

內積一般指點積。

在數學中,數量積(dot product; scalar product,也稱為點積)是接受在實數r上的兩個向量並返回一個實數值標量的二元運算。它是歐幾里得空間的標準內積。

兩個向量a = [a1, a2,…, an]和b = [b1, b2,…, bn]的點積定義為:

a·b=a1b1+a2b2+……+anbn。

使用矩陣乘法並把(縱列)向量當作n×1 矩陣,點積還可以寫為:

a·b=b*a^t,這裡的a^t指示矩陣a的轉置。

擴充套件資料:

運算律

應用:

在生產生活中,點積同樣應用廣泛。利用點積可判斷一個多邊形是否面向攝像機還是背向攝像機。

向量的點積與它們夾角的餘弦成正比,因此在聚光燈的效果計算中,可以根據點積來得到光照效果,如果點積越大,說明夾角越小,則物理離光照的軸線越近,光照越強。

物理中,點積可以用來計算合力和功。若b為單位向量,則點積即為a在方向b的投影,即給出了力在這個方向上的分解。功即是力和位移的點積。

計算機圖形學常用來進行方向性判斷,如兩向量點積大於0,則它們的方向朝向相近;如果小於0,則方向相反。

向量內積是人工智慧領域中的神經網路技術的數學基礎之一,此方法還被用於動畫渲染(animation-rendering)。

12樓:尋魚之樂

[x,y]=求和xy

線性代數中內積的概念 15

13樓:道峰山營

在數學中,內積(dot product; scalar product,也稱為點積)是接受在實數r上的兩個向量並返回一個實數值標量的二元運算。它是歐幾里得空間的標準內積。

兩個向量a = [a1, a2,…, an]和b = [b1, b2,…, bn]的點積定義為:

a·b=a1b1+a2b2+……+anbn。

使用矩陣乘法並把(縱列)向量當作n×1 矩陣,點積還可以寫為:

a·b=a*b^t,這裡的b^t指示矩陣b的轉置。

14樓:匿名使用者

內積只有向量有,矩陣沒有這種概念。歐幾里德空間本來就是向量空間,不是矩陣空間

「內積」是什麼意思?

15樓:光i暗的雙子神

內積bai是du什麼:「內積」即為「點積」,我們通常zhi還稱他為dao數量積。版

出處:歐幾裡權得空間的標準內積。

數學解釋:兩個向量a = [a1, a2,…, an]和b = [b1, b2,…, bn]的點積定義為a·b=a1b1+a2b2+……+anbn。

通俗理解:使用矩陣乘法並把(縱列)向量當作n×1 矩陣,點積還可以寫為a·b=a^t*b,這裡的a^t指示矩陣a的轉置。

屬於二元運算型別,點積的三個值為u、v、u,v夾角的餘弦。

16樓:秦桑

矩陣的內積參照向量的內積的定義是 兩個向量對應分量乘積之和.

比如: α

專=(1,2,3), β=(4,5,6)

則 α, β的內積等屬於 1*4 +2*5 + 3*6 = 32α與α 的內積 = 1*1+2*2+3*3 = 14.

拓展資料:

內積(inner product),又稱數量積(scalar product)、點積(dot product)是一種向量運算,但其結果為某一數值,並非向量。其物理意義是質點在f的作用下產生位移s,力f所做的功,w=|f||s|cosθ。

在數學中,數量積(dot product; scalar product,也稱為點積)是接受在實數r上的兩個向量並返回一個實數值標量的二元運算。它是歐幾里得空間的標準內積。 兩個向量a = [a1, a2,…, an]和b = [b1, b2,…, bn]的點積定義為:

a·b=a1b1+a2b2+……+anbn。 使用矩陣乘法並把(縱列)向量當作n×1 矩陣,點積還可以寫為: a·b=a*b^t,這裡的b^t指示矩陣b的轉置。

什麼叫矩陣的UD分解,矩陣分解,什麼叫矩陣的UD分解

a u d u t 形式的分解稱為ud分解,其中u是單位上三角陣,d是對角陣 另外,ud分解這個術語用得比較少,個人不推薦使用 什麼叫矩陣的ud分解 相似矩陣應該是bai沒有唯一du性質的 相似zhi矩陣的定義是 兩個n daon矩陣a與b為相專似矩陣當且僅當存屬在一個n n的可逆矩陣p,使得 p ...

什麼叫數字矩陣,什麼是數字矩陣?

到這裡看數字視 到這裡看 什麼是數字矩陣?數字矩陣是lambda矩陣的一個特例,lambda矩陣是數字矩陣的推廣 數字矩陣是什麼?有什麼作用?清投視訊dvi矩陣 imatrix觸控矩陣 將按鍵改為全綵觸控大屏,每一個輸入輸出通道都與介面一一對應,每一個動作的實現只需要3次觸控操作 其中一次是解鎖 採...

什麼是正交矩陣,什麼叫正交矩陣

如果aat e e為單位矩陣,at表示 矩陣a的轉置矩陣 或ata e,則n階實矩陣a稱為正交矩陣。正交矩陣是實數特殊化的酉矩陣,因此總是屬於正規矩陣。儘管我們在這裡只考慮實數矩陣,但這個定義可用於其元素來自任何域的矩陣。正交矩陣畢竟是從內積自然引出的,所以對於複數的矩陣這導致了歸一要求。正交矩陣不...