矩陣A B的特徵值與A或B矩陣特徵值的關係

2021-05-30 12:49:10 字數 2817 閱讀 8301

1樓:zzllrr小樂

矩陣之和的特徵值,與原矩陣特徵值一般沒有普遍的關係成立。

2樓:放棄是放不下

a+b的特徵值等於a的特徵值加b的特徵值

如果知道同階矩陣a,b的特徵值,a+b的特徵值是a和b特徵值的和嗎?

3樓:angela韓雪倩

特徵值的個數不一定只有一個,故一般說a的特徵值之一為x,或x是a的一個特徵值,或x是a的特徵值之一。

如果它們有a的特徵值x對應的特徵向量與b的特徵值y對應的特徵向量相同,比如都是ξ。

那麼 aξ=xξ,b=yξ,此時(a+b)ξ=(x+y)ξ,此時a+b有特徵值x+y,對應的特徵向量還是ξ。

a+b的特徵值是a和b特徵值的和嗎?

矩陣特徵值的求矩陣特徵值的方法

4樓:匿名使用者

求矩陣特徵值的方法

如下:其中矩陣q為正交矩陣,矩陣r為上三角矩陣,至於qr分解到底是怎麼回事,矩陣q和矩陣r是怎麼得到的,你們還是看矩陣論吧,如果我把這些都介紹了,感覺這篇文章要寫崩,或者你可以先認可我是正確的,然後往下看。

由式(22)可知,a1和a2相似,相似矩陣具有相同的特徵值,說明a1和a2的特徵值相同,我們就可以通過求取a2的特徵值來間接求取a1的特徵值。

5樓:善良的杜娟

把特徵值代入特徵方程,運用初等行變換法,將矩陣化到最簡,然後可得到基礎解系。求矩陣的全部特徵值和特徵向量的方法如下:

第一步:計算的特徵多項式;

第二步:求出特徵方程的全部根,即為的全部特徵值;

第三步:對於的每一個特徵值,求出齊次線性方程組:的一個基礎解系,則可求出屬於特徵值的全部特徵向量。

求特徵向量:

設a為n階矩陣,根據關係式ax=λx,可寫出(λe-a)x=0,繼而寫出特徵多項式|λe-a|=0,可求出矩陣a有n個特徵值(包括重特徵值)。將求出的特徵值λi代入原特徵多項式,求解方程(λie-a)x=0,所求解向量x就是對應的特徵值λi的特徵向量。

判斷矩陣可對角化的充要條件:

矩陣可對角化有兩個充要條件:

1、矩陣有n個不同的特徵向量;

2、特徵向量重根的重數等於基礎解系的個數。對於第二個充要條件,則需要出現二重以上的重特徵值可驗證(一重相當於沒有重根)。

若矩陣a可對角化,則其對角矩陣λ的主對角線元素全部為a的特徵值,其餘元素全部為0。(一個矩陣的對角陣不唯一,其特徵值可以換序,但都存在由對應特徵向量順序組成的可逆矩陣p使p⁻¹ap=λ)。

6樓:匿名使用者

b 的各列元素相等,r(b) = 1, 有 n -1 重零特徵值。

或書上寫的, b 的各行元素成比例,

因第 2 行是第 1 行的 4 倍,...... , 第 n 行是第 1 行的 n^2 倍,

r(b) = 1, 有 n -1 重零特徵值。

一個非零特徵值是根據特徵值以下性質得出的:

所有特徵值之和等於矩陣的跡(即對角元之和)。

7樓:血盟孑孑

ax=mx,等價於求m,使得(me-a)x=0,其中e是單位矩陣,0為零矩陣。

|me-a|=0,求得的m值即為a的特徵值。|me-a| 是一個n次多項式,它的全部根就是n階方陣a的全部特徵值,這些根有可能相重複,也有可能是複數。

如果n階矩陣a的全部特徵值為m1 m2 ... mn,則|a|=m1*m2*...*mn

同時矩陣a的跡是特徵值之和:tr(a)=m1+m2+m3+…+mn

如果n階矩陣a滿足矩陣多項式方程g(a)=0, 則矩陣a的特徵值m一定滿足條件g(m)=0;特徵值m可以通過解方程g(m)=0求得。

還可用mathematica求得。

8樓:李敏

|λ|λe-a|=|λ-1 2 -2|=(-1)^2×|-2 -4 λ+2| (把第一行和第二行互換,再把新的第一行和

|2 λ+2 -4| |λ-1 2 -2| 第三行互換)

|-2 -4 λ+2| |2 λ+2 -4|

=|-2 -4 λ+2|=(-1)×|-2 -4 λ+2|

|0 4-2λ 1/2×λ^2+1/2×λ-3| |0 λ-2 λ-2|

|0 λ-2 λ-2| |0 4-2λ 1/2×λ^2+1/2×λ-3|

=(-1)×|-2 -4 λ+2|=(λ+7)(λ-2)^2.

|0 λ-2 λ-2|

|0 0 1/2×(λ+7)(λ-2)|

所以,a的特徵值為-7,2,2.

9樓:最愛他們姓

這個沒有接觸過呢,不是很懂,不好意思,沒能幫到你,希望你能得到滿意的答覆,祝你生活愉快,謝謝!

若矩陣a的特徵值是a,矩陣b的特徵值是b,那麼a+b的特徵值是a+b嗎,為什麼

10樓:匿名使用者

性質絕對的p歷a+bp等於pap+pbp懂了?

如何計算矩陣A關於矩陣B的廣義特徵值(matlab實現)

若b可逆比較好計算,如下 v,d eig a b d是廣義特徵值構成的對角矩陣,v是相應特徵向量。進一步用qr分解還可以得到正交基,不過你只要特徵值,所以就不用了。劉老師您好,請問使用matlab對矩陣a和b計算其廣義特徵值,其中a為全零矩陣,結果應該是什麼,多謝了!廣義特徵值 抄問題ax bx和標...

如何求矩陣的特徵值,如何求矩陣的特徵值

相似矩陣有相同的特徵值。對於a有和b都有 2,剩下的二次項根據待定係數法求解。矩陣特徵值的求矩陣特徵值的方法 求矩陣特徵值的方法 如下 其中矩陣q為正交矩陣,矩陣r為上三角矩陣,至於qr分解到底是怎麼回事,矩陣q和矩陣r是怎麼得到的,你們還是看矩陣論吧,如果我把這些都介紹了,感覺這篇文章要寫崩,或者...

一般矩陣的特徵值怎麼求,一般矩陣的特徵值怎麼求

在求bai矩陣的 特徵方程之du前,需要先了解一下zhi矩陣的特徵值。假 dao設有一個回a,它是一個n階方陣,如果有存在答著這樣一個數 數 和一個n維非零的向量x,使的關係式ax x成立,那麼則稱數 為這個方陣的特徵值,這個非零向量x就稱為他的特徵向量。矩陣的特徵方程的表示式為 e a 0。是一個...