高等數學,求該微分方程滿足所給初始條件的特解,希望步驟詳細一點,謝謝

2021-05-19 16:44:45 字數 3313 閱讀 4910

1樓:匿名使用者

解:∵xlnxdy+(y-lnx)dx=0==>(lnxdy+ydx/x)-lnxdx/x=0 (等式兩端同除x)

==>d(ylnx)-lnxd(lnx)=0==>∫d(ylnx)-∫lnxd(lnx)=0 (積分)==>ylnx-(lnx)^2/2=c (c是積分常數)==>y=c/lnx+lnx/2

∴此方程的通解是y=c/lnx+lnx/2∵y(e)=1

∴代入通解,得c=1/2

故所求特解是y=(1/lnx+lnx)/2。

高等數學:求微分方程滿足初始條件的特解?

2樓:匿名使用者

||令y=ux,y'=u+xu'

u+xu'=ulnu

分離bai變數du得du/u(lnu-1)=dx/xd(lnu-1)/(lnu-1)=dx/xln|zhilnu-1|=ln|x|+c

lnu-1=cx

當x=1時daoy=e²,所以

專u=e²,代入上屬

式解得c=1

所以lnu=x+1

ln(y/x)=lny-lnx=x+1

lny=lnx+x+1

y=xe^(x+1)

3樓:西域牛仔王

設 y/x=

來u,則自 y=xu,

y'=u+xu'=uln(u),bai

所以 du/[uln(u) - u]=dx / x,積分得du ln[ln(u) - 1]=ln(cx),ln(y/x) - 1=cx,

把zhi x=1,y=e² 代入,得 c=1,所以可得 y=xe^(x+1)。dao

4樓:匿名使用者

解:∵(x-siny)dy+tanydx=0==>xdy+tanydx-sinydy=0==>xcosydy+sinydx-sinycosydy=0 (等式兩端同乘baicosy)==>d(xsiny)-d((siny)^2)/2=0==>xsiny-(siny)^2/2=c/2 (c是常數)==>(2x-siny)siny=c∴原方du

程的通解是(2x-siny)siny=c於是,zhi把y(1)=πdao/6代入通解,得專c=3/4故原方程滿足所給初屬始條件的特解是(2x-siny)siny=3/4。

5樓:兔斯基

這個根據你給出的題目,很顯然要想要解特解先要求通解,通解可以換元求解,即u=y/x,再進行求解。

微分方程的特解怎麼求

6樓:安貞星

二次非齊次微分方程的一般解法

一般式是這樣的ay''+by'+cy=f(x)

第一步:求特徵根

令ar²+br+c=0,解得r1和r2兩個值,(這裡可以是複數,例如(βi)²=-β²)

第二步:通解

1、若r1≠r2,則y=c1*e^(r1*x)+c2*e^(r2*x)

2、若r1=r2,則y=(c1+c2x)*e^(r1*x)

3、若r1,2=α±βi,則y=e^(αx)*(c1cosβx+c2sinβx)

第三步:特解

f(x)的形式是e^(λx)*p(x)型,(注:p(x)是關於x的多項式,且λ經常為0)

則y*=x^k*q(x)*e^(λx) (注:q(x)是和p(x)同樣形式的多項式,例如p(x)是x²+2x,則設q(x)為ax²+bx+c,abc都是待定係數)

1、若λ不是特徵根 k=0 y*=q(x)*e^(λx)

2、若λ是單根 k=1 y*=x*q(x)*e^(λx)

3、若λ是二重根 k=2 y*=x²*q(x)*e^(λx)(注:二重根就是上面解出r1=r2=λ)

f(x)的形式是e^(λx)*p(x)cosβx或e^(λx)*p(x)sinβx

1、若α+βi不是特徵根,y*=e^λx*q(x)(acosβx+bsinβx)

2、若α+βi是特徵根,y*=e^λx*x*q(x)(acosβx+bsinβx)(注:ab都是待定係數)

第四步:解特解係數

把特解的y*'',y*',y*都解出來帶回原方程,對照係數解出待定係數。

最後結果就是y=通解+特解。

通解的係數c1,c2是任意常數。

拓展資料:

微分方程

微分方程指描述未知函式的導數與自變數之間的關係的方程。微分方程的解是一個符合方程的函式。而在初等數學的代數方程,其解是常數值。

高數常用微分表

唯一性存在定一微 分程及約束條件,判斷其解是否存在。唯一性是指在上述條件下,是否只存在一個解。針對常微分方程的初值問題,皮亞諾存在性定理可判別解的存在性,柯西-利普希茨定理則可以判別解的存在性及唯一性。

針對偏微分方程,柯西-克瓦列夫斯基定理可以判別解的存在性及唯一性。 皮亞諾存在性定理可以判斷常微分方程初值問題的解是否存在。

7樓:匿名使用者

微分方程的特解步驟如下:

一個二階常係數非齊次線性微分方程,首先判斷出是什麼型別的。

然後寫出與所給方程對應的齊次方程。

接著寫出它的特徵方程。由於這裡λ=0不是特徵方程的根,所以可以設出特解。

把特解代入所給方程,比較兩端x同次冪的係數。

舉例如下:

8樓:耐懊鶴

∵齊次方程y''-5y'+6y=0的特徵方程是r²-5r+6=0,則r1=2,r2=3

∴齊次方程y''-5y'+6y=0的通解是y=c1e^(2x)+c2e^(3x) (c1,c2是積分常數)

∵設原方程的解為y=(ax²+bx)e^(2x)

代入原方程,化簡整理得-2axe^(2x)+(2a-b)e^(2x)=xe^(2x)

==>-2a=1,2a-b=0

==>a=-1/2,b=-1

∴原方程的一個解是y=-(x²/2+x)e^(2x)

於是,原方程的通解是y=c1e^(2x)+c2e^(3x)-(x²/2+x)e^(2x) (c1,c2是積分常數)

∵y(0)=5,y'(0)=1 ==>c1+c2=5,2c1+3c2-1=11

∴c1=3,c2=2

故原方程在初始條件y(0)=5,y'(0)=1下的特解是y=3e^(2x)+2e^(3x)-(x²/2+x)e^(2x)

即y=(3-x-x²/2)e^(2x)+2e^(3x).

9樓:匿名使用者

微分方程的特解怎麼求?你是80我也不會。有時間我告訴你。

10樓:匿名使用者

這個提示非常難的,我覺得具有這方面的學生或者是老師幫來解答,知道你是學生還是什麼?如果你是學生的話,你可以問以前老師,不要不好意思的

高等數學,常微分方程,如圖所示,圖中是如何把y的特解的穩定性轉化成x的零解的穩定性的,沒有看懂

數學應該是多做多練習,練習足夠了自然而然就會了,依靠別人解答是不明智的做法,別人做的終究是別人會,而你還是不會。好好加油吧!高等數學,常微分方程的穩定性問題,如圖中所示把求x的穩定性的問題轉化為關於y的零解的穩定性問題,100 x x t,t0,x1 是關於解x的方程,顯然多出了t,方程相當於出現了...

高等數學,誰能告訴我這個用微分方程法找函式的原理

關於這個問題我也在探索中,有了些思路也還有些疑問,分享給大家一起 首先,造輔助函式我理解為逆向思維過程,對所求式g x,f x f x 0求解微分方程,得解h x,f x c,於是有 1.解h c滿足g 0,即h c 所有的c值 能使g 0,從而證明h c即可,2.h c等價於h 0,所以h必滿足羅...

高等數學如何求函式的全微分,高等數學如何求一個函式的全微分

你鉛筆標示地方的原因是 引著oa,因為在x軸上,y 0,所以xy2 0,所以積分等於0 這個問題考察的知識點可以這樣考慮 知道一個二元函式u x,y 的微分表示式,如何去求這個二元函式。注意到du p x,y dx q x,y dy,而是否任意的形如 p x,y dx q x,y dy 都是某個二元...