求多項式f x x 5 5x 4 7x 3 2x 2 4x 8在有理數域實數域和複數域的標準分解式

2021-06-01 05:24:44 字數 3302 閱讀 9679

1樓:匿名使用者

樓主你好,很高興為您解答。

由於(f(x),fˊ(x))=1↔f(x)無重根,所以 x^5-5x^4+7x^3-2x^2+4x-8=f(x),可以得到fˊ(x),

利用輾轉相除法得到(f(x),fˊ(x))=(x-2)²,所以f(x)有重根2,

而且fˊ(x)也有重根2,

f(x)中的2是它的三重根,

用 x-2 去除f(x)連續三次用綜合除法,得到商 x²+x+1。

所以f(x)=(x-2)^3*(x^2+x+1)。

希望樓主滿意。

用秦九韶演算法求多項式f(x)=x^5+2x^4+3x^3+4x^2+5x+6當x=2的值

2樓:尹六六老師

你分開來看:v1=x+2

v2=(x+2)x+3

v3=((x+2)x+3)x+4

v4=(((x+2)x+3)x+4)x+5

所以,

v2=v1·x+3v3=v2·x+4……

求下列多項式在有理域,實數域和複數域上的標準分解式。f(x)=x^4+2x^3+5x^2+4x-1

3樓:數學系的好娃娃

用手機知道給你傳圖過去昂。。。你看看對不對。。。

用秦九韶演算法求多項式f(x)=7x^7+6x^6+5x^5+4x^4+3x^3+2x^2+x,當x=3時的值

4樓:莫氏家族0小風

^^^x(7x^6+6x^5+5x^4+4x^3+3x^2+2x+1)=x(x(7x^5+6x^4+5x^3+4x^2+3x+2)+1)=x(x(x(7x^4+6x^3+5x^2+4x+3)+2)+1)=x(x(x(x(7x^3+6x^2+5x+4)+3)+2)+1)=x(x(x(x(x(7x^2+6x)+5)+4)+3)+2)+1)=x(x(x(x(x(x(7x+6)+5)+4)+3)+2)+1)=x(x(x(x(x(x(27)+5)+4)+3)+2)+1)=x(x(x(x(x(86)+4)+3)+2)+1)=x(x(x(x(262)+3)+2)+1)=x(x(x(789)+2)+1)

=x(x(2369)+1)

=x(7108)

=21324

5樓:充浚戶忻忻

用秦九韶演算法計算函式f(x)=2x^4+3x^3+5x-4在x=2時的函式值

6樓:獨飇力姣麗

(a2x+a1)x+a02次加法2次乘法

用秦九韶演算法求多項式f(x)=7x^7+6x^6+5x^5+4x^4+3x^3+2x^2+x當x=3時,v3= (v3是什麼意思啊 求詳解)

7樓:匿名使用者

當x=3時,v3= (v3是什麼意思啊 求詳解)

由內向外逐步算:

解:改寫為 f(x) = ((((((7x+6)x + 5)x + 4)x + 3)x + 2)x + 1)x + 0

v0 = 7 v就是value(值)的意思

v1 = 7×3 + 6 = 27;

v2 = 27×3 + 5 = 86;

v3 = 86×3 + 4 = 262;

v4 = 262×3 + 3 = 789;

v5 = 789×3 + 2 = 2369;

v6 = 2369×3 + 1 = 7108;

v7 = 7108×3 + 0 = 21324.

x = 3時,多項式f(x) = 7x^7 + 6x^6 + 5x^5 + 4x^4 + 3x^3 + 2x^2 + x的值為21324.

秦九韶的演算法的特點在於:通過反覆計算n個一次式,逐步得到(遞推式)的n次多項式的值.

需要乘法—次,加法—次,工作量比常規方法節省了一半,而且邏輯結構也較簡單。

按(x-4)的冪多項式f(x)=x^4-5x^3+x^2-3x+4

8樓:我是一個麻瓜啊

^-56+21(x-4)+37(x-4)^2+11(x-4)^3+(x-4)^4。

分析過程如下:

將f(x)=x^4-5x^3+x^2-3x+4按x-4的乘冪:先求出各階導數。

f'(x)=4x^3-15x^2+2x-3.

f''(x)=12x^2-30x+2.

f'''(x)=24x-30

f''''(x)=24.

f'''''(x)=0

再求出下列資料:f(4)=-56,f'(4)=21,f''(4)=74,f'''(4)=66,f''''(4)=24

於是f(x)=x^4-5x^3+x^2-3x+4

=-56+21(x-4)+(74/2!)(x-4)^2+(66/3!)(x-4)^3+(24/4!)(x-4)^4

=-56+21(x-4)+37(x-4)^2+11(x-4)^3+(x-4)^4

9樓:匿名使用者

將f(x)在x=4處,用泰勒公式

過程如下圖:

求多項式f(x)=x^5 x^4-9x-9在有理數域,實數域及複數域中的標準分解式

10樓:我不是他舅

有理數f(x)=x^4(x+1)-9(x+1)=(x+1)(x^4-9)

=(x+1)(x²+3)(x²-3)

實數=(x+1)(x²+3)(x²-3)

=(x+1)(x²+3)(x+√3)(x-√3)複數=(x+1)(x²+3)(x+√3)(x-√3)=(x+1)(x+i√3)(x-i√3)(x+√3)(x-√3)

設f(x)=x^4-5x^3+9x^2-8x+4在實數域和複數域上的標準分解式

11樓:

^^f(x)=x^4-4x^3+4x^2-x^3+4x^2-4x+x^2-4x+4

=x^2(x^2-4x+4)-x(x^2-4x+4)+(x^2-4x+4)

=(x^2-4x+4)(x^2-x+1)

=(x-2)^2(x^2-x+1)

此為實數域的分解

若為複數域,則進一步有:

f(x)=(x-2)^2 [x-(1-i√3)/2][x-(1+i√3)/2]

按(X 4)的冪展開多項式f x x 4 5x 3 x 2 3x 4要詳細過程

將f x x 4 5x 3 x 2 3x 4按x 4的乘冪展開 先求出各階導數 f x 4x 3 15x 2 2x 3.f x 12x 2 30x 2.f x 24x 30 f x 24.f x 0 由此可知,後,餘項為0,也就內是說,這是 無誤差.再求出容下列資料 f 4 56,f 4 21,f ...

多項式f(x)除以x 4 x 2 1所得餘式為x 3 2x 2 3x 4那麼f(x)除以x 2 x 1的餘式是多少

f x x 4 x 2 1 g x x 3 2x 2 3x 4 分解整理後得 f x x 2 x 1 x 2g x x 1 g x g x 1 x 3 所以餘式是x 3 多項式f x 除以x 4 x 2 1所得的餘式為x 3 2x 2 3x 4,證明f x 除以x 2 x 1所得的餘式為x 3 設 ...

如果關於x的多項式 2x的平方 mx nx的平方 5x 1的值與x的值無關,求m n的值

原式 n 2 x m 5 x 1值與x的值無關所以係數為0 所以n 2 0,m 5 0 m 5,n 2 1 a 0,而a b 0 所以b 0 ab 0 所以a 0 a 4,b 3 所以a 2,b 3 2 a b a a b a b ab ab b a a b ab a b b a b a b a a...