二元函式可微分與偏導存在有什麼關係?可微

2021-05-24 13:13:47 字數 4131 閱讀 9677

1樓:pasirris白沙

1、導數抄

與微分的區分,是中國微積分

襲的概念,不是國際微積分的概念;

2、國際微積分,只有differentiation,我們時而翻譯為導數,時而翻

譯成微分,無一定之規,純由心情而定,例如

total differentiation,究竟是全微分?還是全導數?全憑教師的心

情想怎麼扯就這麼扯,今天怎麼扯跟明天怎麼扯毫無關係。

3、由此而導致的可微、可導,differentiable,更是玄乎其玄;

類似概念舉不勝舉,再也無法再翻譯成英文。

4、在中文微積分概念中:

y = f(x),

dy = f'(x) dx;

f'(x) 是導數;

dx、dy、f'(x) dx 都是屬於微分;

函式的微分 = 函式的導數 乘以 dx,即 dy = f'(x) dx。

可偏導,是指在某個方向上可以求導;

可微,是指在所有的方向上可以可導;

可微一定可導,可導不一定可微。

僅此而已!

這僅僅是中國微積分的概念,中國微積分的特色。

2樓:木頭人白露

可微:各方向偏導都存在,且全增量=全微分+0(p) p與xy均無關,且趨近於0

由上定義,可微需要兩個條件,而偏導存在只是其中之一,故可微是偏導存在的充分不必要條件。

3樓:落葉無痕

可微最強,其次可偏導,再就是連續

多元函式的連續、偏導存在存在和可微之間有什麼關係

4樓:匿名使用者

二元函式連續抄、偏導數存襲在、可微之間的bai關係1、若二元函式f在其定du義域內某

點可微zhi,則二元函式f在該點偏導數存在,反過來則不一定成立。

2、若二元函式函式f在其定義域內的某點可微,則二元函式f在該點連續,反過來則不一定成立。

3、二元函式f在其定義域內某點是否連續與偏導數是否存在無關。

4、可微的充要條件:函式的偏導數在dao某點的某鄰域記憶體在且連續,則二元函式f在該點可微。

上面的4個結論在多元函式中也成立

5樓:死神vs火影

偏導數連續是可微的充分不必要條件

多元函式的連續、偏導存在存在和可微之間有什麼關係?

6樓:匿名使用者

二元函式連續、

偏導數存在、可微之間的關係

1、若二元函式f在其定義域內某點可微,則二元函式f在該點偏導數存在,反過來則不一定成立。

2、若二元函式函式f在其定義域內的某點可微,則二元函式f在該點連續,反過來則不一定成立。

3、二元函式f在其定義域內某點是否連續與偏導數是否存在無關。

4、可微的充要條件:函式的偏導數在某點的某鄰域記憶體在且連續,則二元函式f在該點可微。

上面的4個結論在多元函式中也成立

7樓:匿名使用者

1、若二元函式f在其定義域內某點可微,則二元函式f在該點偏導數存在,反過來則不一定成立。

2、若二元函式函式f在其定義域內的某點可微,則二元函式f在該點連續,反過來則不一定成立。

3、二元函式f在其定義域內某點是否連續與偏導數是否存在無關。

4、可微的充要條件:函式的偏導數在某點的某鄰域記憶體在且連續,則二元函式f在該點可微。

設d為一個非空的n 元有序陣列的集合, f為某一確定的對應規則。若對於每一個有序陣列 ( x1,x2,…,xn)∈d,通過對應規則f,都有唯一確定的實數y與之對應,則稱對應規則f為定義在d上的n元函式。記為y=f(x1,x2,…,xn) 其中 ( x1,x2,…,xn)∈d。

變數x1,x2,…,xn稱為自變數,y稱為因變數。

多元函式的本質是一種關係,是兩個集合間一種確定的對應關係。這兩個集合的元素可以是數;也可以是點、線、面、體;還可以是向量、矩陣等等。一個元素或多個元素對應的結果可以是唯一的元素,即單值的。

也可以是多個元素,即多值的。人們最常見的函式,以及目前我國中學數學教科書所說的「函式」,除有特別註明者外,實際上(全稱)是一元單值實變函式。

多元函式,偏導數存在,偏導數連續,可微這三者什麼關係? 或者可微與偏導數連續的聯絡怎麼解釋證明?

8樓:多元函式偏導

首先先把結論告訴你,偏導數存在是一個很強的條件,既

可以推出可微也可以推出偏導數存在。然後可微偏導數一定存在,反之不成立。你的那個例子就是一個反例。具體的我們只需要證明可微偏導數存在和偏導數連續則可微就行。

二元函式z=f(x,y)在點(x0,y0)處可導(偏導數存在)與可微都關係是什麼?為什麼?

9樓:非常可愛

1、二元函式z=f(x,y)在點(x0,y0)連續, 可偏導,可微及有一階連續偏導數彼此之間的關係:有一階連續偏導數==>可微==>連續;可微==>可偏導;可偏導=≠>連續。

2、如果f(x,y)在(x0,y0)處可微,則(x0,y0)為f(x,y)極值點的必要條件是:fx(x0,y0)=fy(x0,y0)=0。

擴充套件資料

如果函式f(x,y)在區域d內的每一點處都連續,則稱函式f(x,y)在d內連續。

一切二元初等函式在其定義區域內是連續的.所謂定義區域是指包含在定義域內的區域或閉區域。

在有界閉區域d上的二元連續函式,必定在d上有界,且能取得它的最大值和最小值。

在有界閉區域d上的二元連續函式必取得介於最大值與最小值之間的任何值。

10樓:匿名使用者

二元函式z=f(x,y)在點(x0,y0)可微分一定在(x0,y0)可偏導,即存在偏導數;但反過來,存在偏導數卻不一定可微,也就是可微是可偏導的充分條件但不是必要條件。這個是可以舉例說明的。

11樓:匿名使用者

可微時,偏導數一定存在,這是課本上的定理,反過來,偏導數存在時,不一定可微

例如,f(x,y)=

xy/(x^2+y^2),(x,y)≠(0,0)時0,(x,y)≠(0,0)時

f(x,y)在(0,0)點不連續,兩個偏導數都是0,不可微

12樓:baby愛上你的假

可微一定可偏導,但可偏導不一定可微。也就是可微是可偏導的充分不必要條件

函式可微是存在偏導數的什麼條件

13樓:春素小皙化妝品

1、必要條件若函式在某點可微分,則函式在該點必連續;若二元函式在某點可微分,則該函式在該點對x和y的偏導數必存在。

2、充分條件

若函式對x和y的偏導數在這點的某一鄰域內都存在,且均在這點連續,則該函式在這點可微。

設函式y= f(x),若自變數在點x的改變數δx與函式相應的改變數δy有關係δy=a×δx+ο(δx),其中a與δx無關,則稱函式f(x)在點x可微,並稱aδx為函式f(x)在點x的微分,記作dy,即dy=a×δx,當x=x0時,則記作dy∣x=x0。

擴充套件資料

偏導數求法

當函式 z=f(x,y) 在 (x0,y0)的兩個偏導數 f'x(x0,y0) 與 f'y(x0,y0)都存在時,我們稱 f(x,y) 在 (x0,y0)處可導。如果函式 f(x,y) 在域 d 的每一點均可導,那麼稱函式 f(x,y) 在域 d 可導。

此時,對應於域 d 的每一點 (x,y) ,必有一個對 x (對 y )的偏導數,因而在域 d 確定了一個新的二元函式,稱為 f(x,y)對x(對y)的偏導函式。簡稱偏導數。

按偏導數的定義,將多元函式關於一個自變數求偏導數時,就將其餘的自變數看成常數,此時他的求導方法與一元函式導數的求法是一樣的。

14樓:匿名使用者

可微⇒偏導存在

這不是明顯的充分條件嗎?

15樓:韌勁

你好:必要條件

一維時是充分必要條件.

高維時必要不充分,但是可以證明當對每一個變數偏導數都存在而且連續時函式可微.

可微必定連續且偏導數存在

連續未必偏導數存在,偏導數存在也未必連續

連續未必可微,偏導數存在也未必可微

偏導數連續是可微的充分不必要條件

希望能幫助你

為什麼偏導數存在不一定可微,多元函式偏導存在為什麼不一定可微

對於一元函式來說,可導和可微 是等價的,而對多元函式來說,偏導數都存在,也保證不了可微性,這是因為偏導數僅僅是在特定方向上的函式變化率,它對函式在某一點附近的變化情況的描述是極不完整的.1,偏導數存在且連續,則函式必可微 2,可微必可導 3,偏導存在與連續不存在任何關係 其幾何意義是 z f x,y...

二元函式全微分為什麼要這樣定義,是不是有許多優秀的

1 e c a 3 2,則 a c 4c 3 c c 3 b 即 c 3b,a 2b 直線 ab 到原點的距離是 ab a b 2b 5 按題意有 2b 5 4 5,所以 b 2 從而 a 4 橢圓方程 x 16 y 4 1 2 將 y kx 1 代入橢圓方程中 x 16 kx 1 4 1,整理得 ...

二元函式在某一點不可導,那麼在這一點可微嗎?請給出詳細解釋

答 不可微 可微性是最嚴格的條件 根據定義,若極限lim 0 z f x x f y y 0,則函式才可微 二元函式可微分,則偏導數必存在,若偏導數不存在的話函式也必不可微即二元函式在一點處的兩個偏導數存在是二元函式在這一點處可微 必要不充分 條件 若兩函式在一點都不可導,則其乘積在這點也不可導嗎 ...