1樓:軒雅宣禮
「∉」 這個符號代表「不屬於」。「√3∉q」的含義是「√3不屬於有理數」。你可能看錯了。⑥是對的。
2樓:哀湛奈錕
是無理數
假設根號二是一分數,設其為(p/q)(p,q互質),由根號二的意義得(p/q)的平方=2,即有(p的平方/q的平方)=2,故q的平方=2倍的p的平方。
請注意,2倍的p的平方必定是偶數,因而q的平方也必定是偶數,進而q一定是偶數。於是可設q=2k(k是正整數),由上述式子得
(2k)的平方=2倍的p的平方,從而2倍的k的平方=p的平方。
所以p的平方必定是偶數,於是p也是偶數,這與p,q互質矛盾。
這個矛盾表明我們的假設「根號二是一分數」不成立,所以根號二既非整數,也非分數,就是說,根號二是無理數。
3樓:把青春翻湧成她
這道選擇題的題目為「下列所給關係正確的是……」
√3是無理數,屬於無理數集。即√3不屬於(∉)有理數集(q)。
根號3是有理數,還是無理數
4樓:叫那個不知道
根號3是無理數。無理數,也稱為無限不迴圈小數,不能寫作兩整數之比。若將它寫成小數形式,小數點之後的數字有無限多個,並且不會迴圈。
常見的無理數有非完全平方數的平方根、π和e(其中後兩者均為超越數)等。無理數的另一特徵是無限的連分數表示式。無理數最早由畢達哥拉斯學派**希伯索斯發現。
擴充套件資料
希伯索斯的發現,第一次向人們揭示了有理數系的缺陷,證明了它不能同連續的無限直線等同看待,有理數並沒有佈滿數軸上的點,在數軸上存在著不能用有理數表示的「孔隙」。而這種「孔隙」經後人證明簡直多得「不可勝數」。
於是,古希臘人把有理數視為連續銜接的那種算術連續統的設想徹底地破滅了。不可公度量的發現連同芝諾悖論一同被稱為數學史上的第一次數學危機,對以後2000多年數學的發展產生了深遠的影響,促使人們從依靠直覺、經驗而轉向依靠證明,推動了公理幾何學和邏輯學的發展,並且孕育了微積分思想萌芽。
長期以來眾說紛紜,得不到正確的解釋,兩個不可通約的比值也一直認為是不可理喻的數。15世紀義大利著名畫家達.芬奇稱之為「無理的數」,17世紀德國天文學家開普勒稱之為「不可名狀」的數。
然而真理畢竟是淹沒不了的,畢氏學派抹殺真理才是「無理」。人們為了紀念希伯索斯這位為真理而獻身的可敬學者,就把不可通約的量取名「無理數」——這就是無理數的由來。
由無理數引發的數學危機一直延續到19世紀下半葉。2023年,德國數學家戴德金從連續性的要求出發,用有理數的「分割」來定義無理數,並把實數理論建立在嚴格的科學基礎上,從而結束了無理數被認為「無理」的時代,也結束了持續2000多年的數學史上的第一次大危機。
5樓:我選擇我就愛
無理數,根號3是開不盡的
請證明:根號三是無理數
6樓:風之鷂
^^1、假設根號3=p/q(p、q為互質整數),則p^2=3q^2
所以3整除p^2,因3是質數,所以3整除p,可設p=3t,則q^2=3t^2,所以3整除q
因此p和q有公約數3,與p和q互質矛盾,所以根號3是無理數
2、設x=根號3,則有方程x^2=3
假設x^2=3有有理數解x=p/q(p、q為互質整數),根據牛頓有理根定理p整除3,q整除1,所以p=1或3,q=1,從而x=1或3,顯然x=1或3不是方程x^2=3的根,矛盾.
3、設x=根號3=p/q,(p,q)=1,所以存在整數s,t使ps+qt=1
根號3=根號3*1=根號3(ps+qt)=(√**)s+(√3q)t=3qs+pt為整數,矛盾
拓展資料:
由無理數引發的數學危機一直延續到19世紀下半葉。2023年,德國數學家戴德金從連續性的要求出發,用有理數的「分割」來定義無理數,並把實數理論建立在嚴格的科學基礎上,從而結束了無理數被認為「無理」的時代,也結束了持續2000多年的數學史上的第一次大危機。
7樓:匿名使用者
^證明根號3是無理數,使用反證法
如果√3是有理數,必有√3=p/q(p、q為互質的正整數)兩邊平方:3=p^2/q^2
p^2=3q^2
顯然p為3的倍數,設p=3k(k為正整數)有9k^2=3q^2 即q^2=3k^2
於是q於是3的倍數,與p、q互質矛盾
∴假設不成立,√3是無理數
8樓:雄鷹
分析:①有理數的概念:
「有限小數」和「無限迴圈小數」統稱為有理數。
整數和分數也統稱為有理數。
所有的分數都是有理數,分子除以分母,最終一定是迴圈的。
②無理數的概念:無限不迴圈小數,可引申為「開方開不盡的數」。
③反證法的要領是假設一個明顯荒謬的結論成立,然後正確地證明原假設是錯誤的。
解:假設(√3)是有理數,
∵ 1<3<4
∴(√1)<(√3)<(√4)
即:1<(√3)<2
∴(√3)不是整數。
∵整數和分數也統稱為有理數,而(√3)不是整數
∴在假設「(√3)是有理數」的前提下,(√3)只能是一個分子分母不能約分的分數。
此時假設 (√3) = m/n(m、n均為正整數且互質,二者不能再約分,即二者除1外再無公因數)
兩邊平方,得:
m² / n² = 3
∴m² 是質數3的倍數
我們知道,如果兩個數的乘積是3的倍數,那麼這兩個數當中至少有一個數必是3的倍數。
∴由「m² (m與m的乘積) 是質數3的倍數」得:正整數m是3的倍數。
此時不妨設 m = 3k(k為正整數)
把「m = 3k」 代入「m² / n² = 3」 ,得:
(9k²) / n² = 3
∴3k² = n²
即:n² / k² = 3
對比「m² / n² = 3「 同理可證
正整數n也是3的倍數
∴正整數m和n均為3的倍數
這與「m、n均為正整數且互質」相矛盾。
意即由原假設出發推出了一個與原假設相矛盾的結論,
∴原假設「(√3) = m/n(m、n均為正整數且互質,二者不能再約分,即二者除1外再無公因數)」是不成立的。
∴(√3) 不能是一個分子分母不能約分的分數
而已證(√3) 不是整數
∴(√3) 既 不是整數也不是分數,即(√3) 不是有理數。
∴(√3) 是無理數。
9樓:遲沛山告琳
方法一:假設根號3=p/q(p、q為互質整數),則p^2=3q^2
所以3整除p^2,因3是質數,所以3整除p,可設p=3t,則q^2=3t^2,所以3整除q
因此p和q有公約數3,與p和q互質矛盾,所以根號3是無理數
方法二:設x=根號3,則有方程x^2=3
假設x^2=3有有理數解x=p/q(p、q為互質整數),根據牛頓有理根定理p整除3,q整除1,所以p=1或3,q=1,從而x=1或3,顯然x=1或3不是方程x^2=3的根,矛盾。
方法三:設x=根號3=p/q,(p,q)=1,所以存在整數s,t使ps+qt=1
根號3=根號3*1=根號3(ps+qt)=(√**)s+(√3q)t=3qs+pt為整數,矛盾
10樓:樸卉吾嘉懿
^反證:假設根號3是有理數,則存在兩個互質整數m和n使得根號3=m/n.兩邊平方並整理得m^2=3n^2,
於是m是3的倍數,令m=3q,
代入上式整理得:n^2=3q^2,
故n也是3的倍數,這與m,n互質矛盾。故根號3是無理數。證畢。
證明根號3是無理數,怎麼證明根號三是無理數
反證法 假設 3是有理數。1 2 3 2 2 2 1 3 2,所以 3不是整數,設 3 p q p和q互質 把 3 p q 兩邊平方 3 p 2 q 2 3 q 2 p 2 3q 2是3的倍數數,p 必定3的倍數,設p 3k3 q 2 9 k 2 q 2 3k 2 同理q也是3的倍數數,這與前面假設...
如何證明根號2加根號3再加根號5是無理數
反證法 若根號2加根號3是分數 即整數與整數的比 或說是有理數吧 則平方以後也應是有理數 即5 2根號6也是有理數 即根號6是有理數 顯然根號6只能是分數,不妨設此分數約至最簡時為b a則a,b互質,否則還可約 6 b 2 a 2 即b 2 6a 2 所以b 2為6的倍數 即為2,3的倍數 所以b為...
如何證明根號三是無理數,如何證明根號3是無理數
分析 有理數的概念 有限小數 和 無限迴圈小數 統稱為有理數。整數和分數也統稱為有理數。所有的分數都是有理數,分子除以分母,最終一定是迴圈的。無理數的概念 無限不迴圈小數,可引申為 開方開不盡的數 反證法的要領是假設一個明顯荒謬的結論成立,然後正確地證明原假設是錯誤的。解 假設 3 是有理數,1 3...