初等變換法求合同矩陣,4,5題,求合同矩陣,要過程

2021-03-19 18:20:41 字數 4478 閱讀 7909

1樓:匿名使用者

構造分塊矩陣ae

對矩陣作初等變換, 目標將上子塊分為對角矩陣

方法: 作一列變換後, 作一個同型別的轉置行變換

2樓:匿名使用者

①如今,報知春節迫近的已經不再是臘八粥的香味,而是**上充滿壓力的熱火朝天的春運了。每入臘月,春運有如颶風來臨,很快就勢頭變猛,愈演愈烈;及至臘月底那幾天,春運可謂排山倒海,不可阻遏。每每此時我都會想,世界上哪個國家有這種一年一度上億人風風火火趕著回家過年的景象?

合同矩陣該怎麼找?

3樓:一切切皆寂寞作

1 對於任一實係數n元二次型x'ax,要化為標準型,實際上就是要找一個可逆變換x=cy,將它化為y'by的形式,其中b為對角陣。則c'ac=b,b就是a的一個合同矩陣了。

2 如果你想要的是將a經合同變換化為b時的變換矩陣c,常用的方法有3種,即配方法、初等變換法和正交變換法。

(1)配方法:如果二次型中含變數xi的平方項,則先將含xi的項集中,按xi配成完全平方,直至都配成平方項;如果二次型不含平方項,但某混合項係數aij不為0,可先通過xi=yi+yj,xj=yi-yj,xk=yk(k不是i或j)這一可逆變換使二次型中出現平方項後,按前一方法配方。

例,f=x1^2+x2^2+3x3^2+4x1x2+2x1x3+2x2x3=(x1^2+4x1x2+2x1x3)+x2^2+3x3^2+2x2x3

=(x1+2x2+x3)^2-3x2^2+2x3^2-2x2x3=……=(x1+2x2+x3)^2-3(x2+1/3*x3)^2+7/3*x3^2;

作變換y1=x1+2x2+x3,y2=x2+1/3*x3,y3=x3,就得標準型f=y1^2-3y2^2+7/3*y3^2.

將上述變換求出逆變換x1=y1-2y2-5/3*y3,x2=y2-1/3*y3,x3=y3,寫成矩陣形式x=cy形式,其中c=(1,-2,-5/3;0,1,-1/3;0,0,1)(分號表示矩陣行結束)就是合同變換中的變換矩陣。

例,f=2x1x2-6x1x3,無平方項,則先作變換x1=y1+y2,x2=y1-y2,y3=x3,代入f中

f=2y1^2-2y2^2-6y1y3-6y2y3=2(y1-3/2*y3)^2-2(y2+3/2*y3)^2;

再作變換z1=y1-3/2*y3,z2=y2+3/2*y3,z3=y3用逆變換y1=z1+3/2*z3,y2=z2-3/2*z3,y3=z3,就能把f化成

f=2z1^2-2z2^2這種標準二次型。

最後將再次用的變換寫成矩陣形式,x=c1*y,y=c2*z的形式,x=c1*c2*z,則c=c1*c2就是所求(具體計算略)。

(2)初等變換法:

將二次型的矩陣a與同階單位陣i合併成n_2n的矩陣(a|i),在這個矩陣中作初等行變換並對子塊a再作同樣的初等列變換,當將a化為對角陣時,子塊i將會變為c』。

(3)正交變換法:

先寫出二次型f的tdbl,它是實對稱矩陣,求出全部特徵值λi(i=1,2,……,n);再對每一特徵值寫出它所對應的單位特徵向量(特徵值相同的不同特徵向量注意正交化);把上述單位正交特徵向量作為矩陣的列構造正交矩陣t,那麼正交變換x=ty將會把二次型x'ax化為標準形f=λ1*y1^2+λ2*y2^2+……+λn*yn^2

4,5題,求合同矩陣,要過程

4樓:專注解答三十年

第四題答案為d求合同矩陣就是對原矩陣進行合同變換,等價於對行和列均進行一次相同的變換,對於a,第二列減去4倍第一列,第二行減去4倍第一行即可,第五題答案為b,可以這麼想,a的特徵值為3,3,0。所以a可以經過正交矩陣變換為diag,再經過初等變換即可得到答案,正交矩陣再乘上一個初等變換矩陣就是合同變換矩陣

合同矩陣怎麼找?

5樓:匿名使用者

合同矩陣:兩個實對稱矩陣a和b,如存在可逆矩陣p,使得

1 對於任一實係數n元二次型x'ax,要化為標準型,實際上就是要找一個可逆變換x=cy,將它化為y'by的形式,其中b為對角陣。則c'ac=b,b就是a的一個合同矩陣了。

2 如果你想要的是將a經合同變換化為b時的變換矩陣c,常用的方法有3種,即配方法、初等變換法和正交變換法。

(1)配方法:如果二次型中含變數xi的平方項,則先將含xi的項集中,按xi配成完全平方,直至都配成平方項;如果二次型不含平方項,但某混合項係數aij不為0,可先通過xi=yi+yj,xj=yi-yj,xk=yk(k不是i或j)這一可逆變換使二次型中出現平方項後,按前一方法配方。

例,f=x1^2+x2^2+3x3^2+4x1x2+2x1x3+2x2x3=(x1^2+4x1x2+2x1x3)+x2^2+3x3^2+2x2x3

=(x1+2x2+x3)^2-3x2^2+2x3^2-2x2x3=……=(x1+2x2+x3)^2-3(x2+1/3*x3)^2+7/3*x3^2;

作變換y1=x1+2x2+x3,y2=x2+1/3*x3,y3=x3,就得標準型f=y1^2-3y2^2+7/3*y3^2.

將上述變換求出逆變換x1=y1-2y2-5/3*y3,x2=y2-1/3*y3,x3=y3,寫成矩陣形式x=cy形式,其中c=(1,-2,-5/3;0,1,-1/3;0,0,1)(分號表示矩陣行結束)就是合同變換中的變換矩陣。

例,f=2x1x2-6x1x3,無平方項,則先作變換x1=y1+y2,x2=y1-y2,y3=x3,代入f中

f=2y1^2-2y2^2-6y1y3-6y2y3=2(y1-3/2*y3)^2-2(y2+3/2*y3)^2;

再作變換z1=y1-3/2*y3,z2=y2+3/2*y3,z3=y3用逆變換y1=z1+3/2*z3,y2=z2-3/2*z3,y3=z3,就能把f化成

f=2z1^2-2z2^2這種標準二次型。

最後將再次用的變換寫成矩陣形式,x=c1*y,y=c2*z的形式,x=c1*c2*z,則c=c1*c2就是所求(具體計算略)。

(2)初等變換法:

將二次型的矩陣a與同階單位陣i合併成n_2n的矩陣(a|i),在這個矩陣中作初等行變換並對子塊a再作同樣的初等列變換,當將a化為對角陣時,子塊i將會變為c』。

(3)正交變換法:

先寫出二次型f的tdbl,它是實對稱矩陣,求出全部特徵值λi(i=1,2,……,n);再對每一特徵值寫出它所對應的單位特徵向量(特徵值相同的不同特徵向量注意正交化);把上述單位正交特徵向量作為矩陣的列構造正交矩陣t,那麼正交變換x=ty將會把二次型x'ax化為標準形f=λ1*y1^2+λ2*y2^2+……+λn*yn^2

6樓:一切切皆寂寞作

1 對於任一實係數n元二次型x'ax,要化為

標準型,實際上就是要找一個可逆變換x=cy,將它化為y'by的形式,其中b為對角陣。則c'ac=b,b就是a的一個合同矩陣了。

2 如果你想要的是將a經合同變換化為b時的變換矩陣c,常用的方法有3種,即配方法、初等變換法和正交變換法。

(1)配方法:如果二次型中含變數xi的平方項,則先將含xi的項集中,按xi配成完全平方,直至都配成平方項;如果二次型不含平方項,但某混合項係數aij不為0,可先通過xi=yi+yj,xj=yi-yj,xk=yk(k不是i或j)這一可逆變換使二次型中出現平方項後,按前一方法配方。

例,f=x1^2+x2^2+3x3^2+4x1x2+2x1x3+2x2x3=(x1^2+4x1x2+2x1x3)+x2^2+3x3^2+2x2x3

=(x1+2x2+x3)^2-3x2^2+2x3^2-2x2x3=……=(x1+2x2+x3)^2-3(x2+1/3*x3)^2+7/3*x3^2;

作變換y1=x1+2x2+x3,y2=x2+1/3*x3,y3=x3,就得標準型f=y1^2-3y2^2+7/3*y3^2.

將上述變換求出逆變換x1=y1-2y2-5/3*y3,x2=y2-1/3*y3,x3=y3,寫成矩陣形式x=cy形式,其中c=(1,-2,-5/3;0,1,-1/3;0,0,1)(分號表示矩陣行結束)就是合同變換中的變換矩陣。

例,f=2x1x2-6x1x3,無平方項,則先作變換x1=y1+y2,x2=y1-y2,y3=x3,代入f中

f=2y1^2-2y2^2-6y1y3-6y2y3=2(y1-3/2*y3)^2-2(y2+3/2*y3)^2;

再作變換z1=y1-3/2*y3,z2=y2+3/2*y3,z3=y3用逆變換y1=z1+3/2*z3,y2=z2-3/2*z3,y3=z3,就能把f化成

f=2z1^2-2z2^2這種標準二次型。

最後將再次用的變換寫成矩陣形式,x=c1*y,y=c2*z的形式,x=c1*c2*z,則c=c1*c2就是所求(具體計算略)。

(2)初等變換法:

將二次型的矩陣a與同階單位陣i合併成n_2n的矩陣(a|i),在這個矩陣中作初等行變換並對子塊a再作同樣的初等列變換,當將a化為對角陣時,子塊i將會變為c』。

(3)正交變換法:

先寫出二次型f的tdbl,它是實對稱矩陣,求出全部特徵值λi(i=1,2,……,n);再對每一特徵值寫出它所對應的單位特徵向量(特徵值相同的不同特徵向量注意正交化);把上述單位正交特徵向量作為矩陣的列構造正交矩陣t,那麼正交變換x=ty將會把二次型x'ax化為標準形f=λ1*y1^2+λ2*y2^2+……+λn*yn^2

矩陣的初等變換的實質是什麼?初等變換有幾種

1.首先你的問題指向不明,我們在解決矩陣有關問題的時候,勢必會用到矩陣的一些基本的變換,根據題目的要求,我們會把矩陣化為需要的形式。大家都知道,一個可逆矩陣可以通過 行or 列 初等變換可以化為一個對角矩陣,例如將之化為單位矩陣e就是一個特例。在求解矩陣的秩或者解方程組,又或是矩陣向量,還是線性相關...

什麼是變換矩陣,什麼是矩陣的初等變換,什麼是矩陣的秩?

線性非奇異變換,即當前的矩陣或者向量乘以一個非奇異矩陣。為什麼要做線性非奇異變換呢?打個比方,我們去摸一隻大象,當前的矩陣摸到的是腿,但是我們想去摸鼻子,那麼我們就需要轉移一下我們的位置,也就是座標,然後我們就在原來矩陣的基礎上,再乘以一個非奇異矩陣,那麼我們的座標就轉移到了大象鼻子的位置,而乘以非...

請問行初等變換後得到的矩陣為過度矩陣的原理

任一矩陣a總可以經初等行變換化為簡化行階梯形矩陣ba與b一般不相等 a本身就是簡化行階梯形矩陣時就不用化了 a與b等價,且存在可逆矩陣p,使 pa b這意味著兩個矩陣的行向量組是等價的 簡化行階梯形矩陣有什麼用 1.解線性方程組 2.求矩陣的秩 3.求矩陣的列向量組的極大無關組,並將其餘列向量則極大...