三階導數與拐點的關係為什麼二階導數為零,三階導數

2021-03-19 18:18:23 字數 3324 閱讀 2370

1樓:玲玲幽魂

這個是二階導數為0的必要條件.

幾何意義就是該點左右兩端的極限不同(趨向於a+和a-),所以是個拐點~

如果要具體的,看看數學分析的書吧~

另:意義如下:

(1)斜線斜率變化的速度

(2)函式的凹凸性.

關於你的補充:

二階導數是比較理論的、比較抽象的一個量,它不像一階導數那樣有明顯的幾何意義,因為它表示的是一階導數的變化率.在圖形上,它主要表現函式的凹凸性,直觀的說,函式是向上突起的,還是向下突起的.

應用:如果一個函式f(x)在某個區間i上有f''(x)(即二階導數)>0恆成立,那麼對於區間i上的任意x,y,總有:

f(x)+f(y)≥2f[(x+y)/2],如果總有f''(x)0恆成立,那麼在區間i上f(x)的圖象上的任意兩點連出的一條線段,這兩點之間的函式圖象都在該線段的下方,反之在該線段的上方.

三階導數與拐點為什麼二階導數為零,三階導數不為零

2樓:王鳳霞醫生

拐點定義:一般的,設y=f(x)在區間i上連續,x0是i的內點(除端點外的i內的點).如果曲線y=f(x)在經過點(x0,f(x0))時,曲線的凹凸性改變了,那麼就稱點(x0,f(x0))為這曲線的拐點

這樣設f(x)在(a,b)內二階可導,x0∈(a,b),則f『』(x0)=0,若在x0兩側附近f『』(x0)異號,則點(x0,f(x0))為曲線的拐點.否則(即f『』(x0)保持同號,(x0,f(x0))不是拐點.

三階導數不為零則2階導數的正負在該店附近改變,進而凹凸性改變,為拐點

請問為什麼二階導為0,三階導不為0就是拐點?最主要的是為什麼拐點要求三階導不為0?

3樓:house黃信

拐點的充分條件就是:

設f(x)在(a,b)內二階可導,x0∈(a,b),f"(x0)=0,若在x0兩側附近f"(x0)異號,則點(x0,f(x0))為曲線的拐點。否則(即f"(x0)保持同號),(x0,f(x0))不是拐點。

所以當函式影象上的某點使函式的二階導數為零,且三階導數不為零時,這點即為函式的拐點。

4樓:匿名使用者

這句話是對的,

拐點的充分條件就是:

設f(x)在(a,b)內二階可導,x0∈(a,b),f"(x0)=0,若在x0兩側附近f"(x0)異號,則點(x0,f(x0))為曲線的拐點。否則(即f"(x0)保持同號),(x0,f(x0))不是拐點。

所以當函式影象上的某點使函式的二階導數為零,且三階導數不為零時,這點即為函式的拐點。

在xo處一階二階導數均為0,三階導數不為0,問xo是否是極值點和拐點的橫座標

5樓:有點傻

結論如下: xo點不是極值點,而是拐點!判斷方式如下:

f(x)在xo鄰域內的二階導數為:f''(xo)=lim[f'(x)-f'(xo)]/(x-xo)=lim f'(x)/(x-xo) x→xo 在xo點一階導數為0的情況下,假如xo點的二階導數大於0,根據極限的保號性,在xo的鄰域內,肯定存在f'(x)/(x-xo) >0(當x在xo右側,一階導數大於0,單調遞增;左側,一階導數小於0,單調遞減),顯然此時xo點為極小值點;當xo點的二階導數小於0,肯定存在xo鄰域: f'(x)/(x-xo) (x-xo) >0,可得出xo右側二階導數大於0為凹,xo左側二階導數小於0為凸,故xo為拐點;當三階導數小於0,同理也能得出x0為拐點的結論。

只有在三階導數=0時,才能說xo非拐點。 以上證明僅供參考,如有疑問可繼續追問!

為什麼三重根 二階導數為0 三階導數不為0

6樓:匿名使用者

拐點定義:一般的,設y=f(x)在區間i上連續,x0是i的內點(除端點外的i內的點).如果曲線y=f(x)在經過點(x0,f(x0))時,曲線的凹凸性改變了,那麼就稱點(x0,f(x0))為這曲線的拐點這樣設f(x)在(a,b)內二階可導,x0∈(a,b),則f『』(x0)=0,若在x0兩側附近f『』(x0)異號,則點(x0,f(x0))為曲線的拐點.

否則(即f『』(x0)保持同號,(x0,f(x0))不是拐點. 三階導數不為零則2階導數的正負在該店附近改變,進而凹凸性改變,為拐點

函式一階導二階導都為0三階導大於0則有何結論

7樓:一生何求

拐點啊。

拐點的必要條件:設f(x)在(a,b)內二階可導,x0∈(a,b),若(x0,f(x0))是曲線y=f(x)的一個拐點,則f『』(x0)=0。

拐點的充分條件:設f(x)在(a,b)內二階可導,x0∈(a,b),則f『』(x0)=0,若在x0兩側附近f『』(x0)異號,則點(x0,f(x0))為曲線的拐點。否則(即f『』(x0)保持同號,(x0,f(x0))不是拐點。

當函式影象上的某點使函式的二階導數為零,且三階導數不為零時,這點即為函式的拐點。

一階導數,二階導數,三階導數各自的作用是幹什麼的?系統詳細一點,或者給個連結也行

8樓:夢色十年

一階導數可以用來描述原函式的增減性。

二階導數可以用來判斷函式在一段區間上的凹凸性,f''(x)>0,則是凹的,f''(x)<0則是凸的。

三階導數一般不用,可以用來找函式的拐點,拐點的意思是如果曲線f(x)在經過點(x0,f(x0))時,曲線的凹凸性改變了,那麼就稱這個點為曲線的拐點。

若f(x)在x0的某鄰域內具有三階連續導數,f''(x0)=0,f'''(x0)≠0,那麼(x0,f(x0))是f(x)的一個拐點。

擴充套件資料

二階導師的性質:

(1)如果一個函式f(x)在某個區間i上有f''(x)(即二階導數)>0恆成立,那麼對於區間i上的任意x,y,總有:

f(x)+f(y)≥2f[(x+y)/2],如果總有f''(x)<0成立,那麼上式的不等號反向。

幾何的直觀解釋:如果一個函式f(x)在某個區間i上有f''(x)(即二階導數)>0恆成立,那麼在區間i上f(x)的圖象上的任意兩點連出的一條線段,這兩點之間的函式圖象都在該線段的下方,反之在該線段的上方。

(2)判斷函式極大值以及極小值。

結合一階、二階導數可以求函式的極值。當一階導數等於0,而二階導數大於0時,為極小值點。當一階導數等於0,而二階導數小於0時,為極大值點;當一階導數和二階導數都等於0時,為駐點。

二階導數為0,三階導數不為0,為什麼一定是拐點

9樓:匿名使用者

用定義可以證的,利用保號性可以證,分左右領域,說明二階導數左右異號。。。也可以用性質,2個方法,你看著辦吧,如圖所示。

請問一階導數,二階導數,三階導數,在經濟中分別有什麼特殊含義

你指的是經濟含義,實際上,導數運用到經濟中,沒有什麼特殊的含義。彈性部分用的是一階導數,除此之外,一階導數也只是用來求極值。至於二階和三階,用的地方更是少之又少。二階導數,三階導數,在經濟中分別有什麼特殊含義 通俗的講,函式 或者說曲線 在人們的一般常識中都是以三維空間來標識的,空間超過三維以後,直...

求最值為什麼要求二階導數,為什麼二階導數可以判斷極值

解答 對於在x0處連續函式f x 可以引用f x0 和f x0 來判斷極值的大小和性質 當f x0 0,且 f x0 0時,則f x0 為極值 1 f x0 0時,則f x0 為極大值 2 f x0 0時,則f x0 為極小值。由此可以看出二階導數的的一個重要作用。可以不求二次導,但是要判斷極值點左...

什麼是函式的二階導數,函式的二階導數是用來求什麼的?

階導數懸賞分 自0 離問題結束bai還有 14 天 22 小時du提問者 瑾笠 初學 一級zhi回答 1 如果你dao 知道導數的基本定義的話,那麼二階導數其實就是一階導數的基礎上繼續對自變數求導而得到的導函式 2 二階導數的正負和函式的走勢形狀有關,或者說和函式的拐點有關。凸凹函式都有一些很好的不...