高中導數概念教學要引入極限嗎,那一年高中數學引入了極限,導數這些知識點,為什麼要

2021-03-19 18:19:53 字數 3783 閱讀 2161

1樓:匿名使用者

有必要吧,導數的定義就是由極限引出的

2樓:匿名使用者

建議引入,有助於同學理解

那一年高中數學引入了極限,導數這些知識點,為什麼要

3樓:武大

(1)依題意得

因為,α∈(0,π/2),tanα=1/2所以,tan2a=2tana/[1-(tana)^2]=2*1/2/[1-1/4]

=1/3/4

=4/3

(2)因為α∈(0,π/2)

所以,sina>0,cosa>0 2a∈(0,π)因為,tana=1/2,(sina)^2+(cosx)^2=1解得sina=√5/5,cosa=2√5/5所以sin2a=2sinacosa=4/5,cos2a=±3/5當sin2a=4/5,cosa=3/5時,sin(2α+π/3)=1/2*sin2a+√3/2*cos2a=1/2*4/5+√3/2*3/5

=(4+3√3)/10

當sin2a=4/5,cosa=-3/5時,sin(2α+π/3)=1/2*sin2a+√3/2*cos2a=1/2*4/5-√3/2*3/5

=(4-3√3)/10

sin(2α+π/3)

高中數學什麼時候改編的,然後引入了極限和導數這些知

4樓:徐少

解析:(1) 極限和導數,是大一《高等數學》的主要內容。高中階段會提前作鋪墊的。

(2) 如果不作任何鋪墊的話,大一直接學習這些課程,且大學裡課程進度十分之快,可以預見的後果是:很多人掛科

高中數學中,導數主要有什麼概念和意義?

5樓:鵲橋月夜

導數(derivative)是微積分中的重要基礎概念。當自變

量的增量趨於零時,因變數的增量與自變數的增量之商的極限。在一個函式存在導數時,稱這個函式可導或者可微分。可導的函式一定連續。

不連續的函式一定不可導。導數實質上就是一個求極限的過程,導數的四則運演算法則**於極限的四則運演算法則。

導數定義

[1](一)導數第一定義:設函式 y = f(x) 在點 x0 的某個領域內有定義,當自變數 x 在 x0 處有增量 △x ( x0 + △x 也在該鄰域內 ) 時,相應地函式取得增量 △y = f(x0 + △x) - f(x0) ;如果 △y 與 △x 之比當 △x→0 時極限存在,則稱函式 y = f(x) 在點 x0 處可導,並稱這個極限值為函式 y = f(x) 在點 x0 處的導數記為 f'(x0) ,即 導數第一定義

(二)導數第二定義:設函式 y = f(x) 在點 x0 的某個領域內有定義,當自變數 x 在 x0 處有變化 △x ( x - x0 也在該鄰域內 ) 時,相應地函式變化 △y = f(x) - f(x0) ;如果 △y 與 △x 之比當 △x→0 時極限存在,則稱函式 y = f(x) 在點 x0 處可導,並稱這個極限值為函式 y = f(x) 在點 x0 處的導數記為 f'(x0) ,即

導數第二定義

(三)導函式與導數:如果函式 y = f(x) 在開區間 i 內每一點都可導,就稱函式f(x)在區間 i 內可導。這時函式 y = f(x) 對於區間 i 內的每一個確定的 x 值,都對應著一個確定的導數,這就構成一個新的函式,稱這個函式為原來函式 y = f(x) 的導函式,記作 y', f'(x), dy/dx, df(x)/dx。

導函式簡稱導數。

高中數學導數的定義理解 200

6樓:熱心網友

導數(derivative)是微積分中的重要基礎概念。當自變數的增量趨於零時,因變數的增量與自變數的增量之商的極限。在一個函式存在導數時,稱這個函式可導或者可微分。

可導的函式一定連續。不連續的函式一定不可導。導數實質上就是一個求極限的過程,導數的四則運演算法則**於極限的四則運演算法則。

導數定義

[1](一)導數第一定義:設函式 y = f(x) 在點 x0 的某個領域內有定義,當自變數 x 在 x0 處有增量 △x ( x0 + △x 也在該鄰域內 ) 時,相應地函式取得增量 △y = f(x0 + △x) - f(x0) ;如果 △y 與 △x 之比當 △x→0 時極限存在,則稱函式 y = f(x) 在點 x0 處可導,並稱這個極限值為函式 y = f(x) 在點 x0 處的導數記為 f'(x0) ,即 導數第一定義

(二)導數第二定義:設函式 y = f(x) 在點 x0 的某個領域內有定義,當自變數 x 在 x0 處有變化 △x ( x - x0 也在該鄰域內 ) 時,相應地函式變化 △y = f(x) - f(x0) ;如果 △y 與 △x 之比當 △x→0 時極限存在,則稱函式 y = f(x) 在點 x0 處可導,並稱這個極限值為函式 y = f(x) 在點 x0 處的導數記為 f'(x0) ,即

導數第二定義

(三)導函式與導數:如果函式 y = f(x) 在開區間 i 內每一點都可導,就稱函式f(x)在區間 i 內可導。這時函式 y = f(x) 對於區間 i 內的每一個確定的 x 值,都對應著一個確定的導數,這就構成一個新的函式,稱這個函式為原來函式 y = f(x) 的導函式,記作 y', f'(x), dy/dx, df(x)/dx。

導函式簡稱導數。

關於導數概念。。

7樓:懶懶的小杜啦

導數(derivative)是微積分中的重要基礎概念。當自變數的增量趨於零時,因變數的增量與自變數的增量之商的極限。在一個函式存在導數時,稱這個函式可導或者可微分。

可導的函式一定連續。不連續的函式一定不可導。導數實質上就是一個求極限的過程,導數的四則運演算法則**於極限的四則運演算法則。

導數定義 [1](一)導數第一定義:設函式 y = f(x) 在點 x0 的某個領域內有定義,當自變數 x 在 x0 處有增量 △x ( x0 + △x 也在該鄰域內 ) 時,相應地函式取得增量 △y = f(x0 + △x) - f(x0) ;如果 △y 與 △x 之比當 △x→0 時極限存在,則稱函式 y = f(x) 在點 x0 處可導,並稱這個極限值為函式 y = f(x) 在點 x0 處的導數記為 f'(x0) ,即 導數第一定義(二)導數第二定義:設函式 y = f(x) 在點 x0 的某個領域內有定義,當自變數 x 在 x0 處有變化 △x ( x - x0 也在該鄰域內 ) 時,相應地函式變化 △y = f(x) - f(x0) ;如果 △y 與 △x 之比當 △x→0 時極限存在,則稱函式 y = f(x) 在點 x0 處可導,並稱這個極限值為函式 y = f(x) 在點 x0 處的導數記為 f'(x0) ,即導數第二定義(三)導函式與導數:

如果函式 y = f(x) 在開區間 i 內每一點都可導,就稱函式f(x)在區間 i 內可導。這時函式 y = f(x) 對於區間 i 內的每一個確定的 x 值,都對應著一個確定的導數,這就構成一個新的函式,稱這個函式為原來函式 y = f(x) 的導函式,記作 y', f'(x), dy/dx, df(x)/dx。導函式簡稱導數。

8樓:匿名使用者

你可以這樣理解。0.9999………就等於一。所以無限接近於零也就等於零。

9樓:東星津風長

導數說白了它其實就是斜率

上面說的分母趨於零,這是當然的了,但不要忘了分子也是可能趨於零的,所以兩者的比就有可能是某一個數,如果分子趨於某一個數,而不是零的話,那麼比值會很大,可以認為是無窮大,也就是我們所說的導數不存在.

x/x,若這裡讓x趨於零的話,分母是趨於零了,但它們的比值是1,所以極限為1.

建議先去搞懂什麼是極限.極限是一個可望不可及的概念,可以很接近它,但永遠到不了那個岸.

並且要認識到導數是一個比值

高中導數公式

c 0 c為常數函式 x n nx n 1 n q 熟記1 x的導數 sinx cosx cosx sinx tanx 1 cosx 2 secx 2 1 tanx 2 cotx 1 sinx 2 cscx 2 1 cotx 2 secx tanx secx cscx cotx cscx arcsi...

高中導數問題!急,高中數學導數的問題很急

問題1,對y x 3求導 導函式為y 3 x 2該導函式在x 1處的解為3 所以 該點處切線斜率為3 又因為切線過點 1,1 故切線方程為y 3x 2 問題2,過程基本同上,切線方程為y 2x 1 問題3,由垂直條件可得 在該點處切線斜率為 6 也就是說 2a b 6 原函式是奇函式 所以x 0時 ...

數學問題,高中,導數 方程的根。謝謝!

f x x 2 a 1 x b 得到 b 0 由於f x 為二元一次函式 由a 0,得到a 1 1 且f x x 2 a 1 x 根的判別式大於0 所以綜合上述有 可以得到f x 有兩個實根 且一個為0 一個大於0 這個通過韋達定理可以知道 所以f x 在x 0處 和 x c c 0 處取兩個極值 ...