用導數定義求導,如何用導數定義求導

2021-05-19 12:39:52 字數 5256 閱讀 2126

1樓:匿名使用者

對比下:

f(x)=10x²在x=-1處的導數值為

lim[h→0] [f(x+h)-f(x)]/h,在x=-1=lim[h→0] [10(-1+h)²-10(-1)²]/h=lim[h→0] [10(h²-2h+1)-10]/h=lim[h→0] (10h²-20h)/h=lim[h→0] (10h-20)

=-20

如何用導數定義求導

2樓:帥哥哥和

導數導數(derivative)亦名微商,由速度問題和切線問題抽象出來的數學概念。又稱變化率。如一輛汽車在10小時內走了 600千米,它的平均速度是60千米/小時,但在實際行駛過程中,是有快慢變化的,不都是60千米/小時。

為了較好地反映汽車在行駛過程中的快慢變化情況,可以縮短時間間隔,設汽車所在位置s與時間t的關係為s=f(t),那麼汽車在由時刻t0變到t1這段時間內的平均速度是[f(t1)-f(t0)/t1-t0],當 t1與t0很接近時,汽車行駛的快慢變化就不會很大,平均速度就能較好地反映汽車在t0 到 t1這段時間內的運動變化情況 ,自然就把極限[f(t1)-f(t0)/t1-t0] 作為汽車在時刻t0的瞬時速度,這就是通常所說的速度。一般地,假設一元函式 y=f(x )在 x0點的附近(x0-a ,x0 +a)內有定義,當自變數的增量δx= x-x0→0時函式增量 δy=f(x)- f(x0)與自變數增量之比的極限存在且有限,就說函式f在x0點可導,稱之為f在x0點的導數(或變化率)。若函式f在區間i 的每一點都可導,便得到一個以i為定義域的新函式,記作 f′,稱之為f的導函式,簡稱為導數。

函式y=f(x)在x0點的導數f′(x0)的幾何意義:表示曲線l 在p0〔x0,f(x0)〕 點的切線斜率。

導數是微積分中的重要概念。導數定義為,當自變數的增量趨於零時,因變數的增量與自變數的增量之商的極限。在一個函式存在導數時,稱這個函式可導或者可微分。

可導的函式一定連續。不連續的函式一定不可導。

物理學、幾何學、經濟學等學科中的一些重要概念都可以用導數來表示。如,導數可以表示運動物體的瞬時速度和加速度、可以表示曲線在一點的斜率、還可以表示經濟學中的邊際和彈性。

求導數的方法

[編輯本段]

(1)求函式y=f(x)在x0處導數的步驟:

① 求函式的增量δy=f(x0+δx)-f(x0)

② 求平均變化率

③ 取極限,得導數。

(2)幾種常見函式的導數公式:

① c'=0(c為常數);

② (x^n)'=nx^(n-1) (n∈q);

③ (sinx)'=cosx;

④ (cosx)'=-sinx;

⑤ (e^x)'=e^x;

⑥ (a^x)'=a^xina (ln為自然對數)

(3)導數的四則運演算法則:

①(u±v)'=u'±v'

②(uv)'=u'v+uv'

③(u/v)'=(u'v-uv')/ v^2

(4)複合函式的導數

複合函式對自變數的導數,等於已知函式對中間變數的導數,乘以中間變數對自變數的導數--稱為鏈式法則。

導數是微積分的一個重要的支柱!

導數公式及證明

[編輯本段]

這裡將列舉幾個基本的函式的導數以及它們的推導過程:

1.y=c(c為常數) y'=0

2.y=x^n y'=nx^(n-1)

3.y=a^x y'=a^xlna

y=e^x y'=e^x

4.y=logax y'=logae/x

y=lnx y'=1/x

5.y=sinx y'=cosx

6.y=cosx y'=-sinx

7.y=tanx y'=1/cos^2x

8.y=cotx y'=-1/sin^2x

9.y=arcsinx y'=1/√1-x^2

10.y=arccosx y'=-1/√1-x^2

11.y=arctanx y'=1/1+x^2

12.y=arccotx y'=-1/1+x^2

在推導的過程中有這幾個常見的公式需要用到:

1.y=f[g(x)],y'=f'[g(x)]•g'(x)『f'[g(x)]中g(x)看作整個變數,而g'(x)中把x看作變數』

2.y=u/v,y'=u'v-uv'/v^2

3.y=f(x)的反函式是x=g(y),則有y'=1/x'

證:1.顯而易見,y=c是一條平行於x軸的直線,所以處處的切線都是平行於x的,故斜率為0。

用導數的定義做也是一樣的:y=c,⊿y=c-c=0,lim⊿x→0⊿y/⊿x=0。

2.這個的推導暫且不證,因為如果根據導數的定義來推導的話就不能推廣到n為任意實數的一般情況。在得到 y=e^x y'=e^x和y=lnx y'=1/x這兩個結果後能用複合函式的求導給予證明。

3.y=a^x,

⊿y=a^(x+⊿x)-a^x=a^x(a^⊿x-1)

⊿y/⊿x=a^x(a^⊿x-1)/⊿x

如果直接令⊿x→0,是不能匯出導函式的,必須設一個輔助的函式β=a^⊿x-1通過換元進行計算。由設的輔助函式可以知道:⊿x=loga(1+β)。

所以(a^⊿x-1)/⊿x=β/loga(1+β)=1/loga(1+β)^1/β

顯然,當⊿x→0時,β也是趨向於0的。而limβ→0(1+β)^1/β=e,所以limβ→01/loga(1+β)^1/β=1/logae=lna。

把這個結果代入lim⊿x→0⊿y/⊿x=lim⊿x→0a^x(a^⊿x-1)/⊿x後得到lim⊿x→0⊿y/⊿x=a^xlna。

可以知道,當a=e時有y=e^x y'=e^x。

4.y=logax

⊿y=loga(x+⊿x)-logax=loga(x+⊿x)/x=loga[(1+⊿x/x)^x]/x

⊿y/⊿x=loga[(1+⊿x/x)^(x/⊿x)]/x

因為當⊿x→0時,⊿x/x趨向於0而x/⊿x趨向於∞,所以lim⊿x→0loga(1+⊿x/x)^(x/⊿x)=logae,所以有

lim⊿x→0⊿y/⊿x=logae/x。

可以知道,當a=e時有y=lnx y'=1/x。

這時可以進行y=x^n y'=nx^(n-1)的推導了。因為y=x^n,所以y=e^ln(x^n)=e^nlnx,

所以y'=e^nlnx•(nlnx)'=x^n•n/x=nx^(n-1)。

5.y=sinx

⊿y=sin(x+⊿x)-sinx=2cos(x+⊿x/2)sin(⊿x/2)

⊿y/⊿x=2cos(x+⊿x/2)sin(⊿x/2)/⊿x=cos(x+⊿x/2)sin(⊿x/2)/(⊿x/2)

所以lim⊿x→0⊿y/⊿x=lim⊿x→0cos(x+⊿x/2)•lim⊿x→0sin(⊿x/2)/(⊿x/2)=cosx

6.類似地,可以匯出y=cosx y'=-sinx。

7.y=tanx=sinx/cosx

y'=[(sinx)'cosx-sinx(cosx)']/cos^2x=(cos^2x+sin^2x)/cos^2x=1/cos^2x

8.y=cotx=cosx/sinx

y'=[(cosx)'sinx-cosx(sinx)']/sin^2x=-1/sin^2x

9.y=arcsinx

x=siny

x'=cosy

y'=1/x'=1/cosy=1/√1-sin^2y=1/√1-x^2

10.y=arccosx

x=cosy

x'=-siny

y'=1/x'=-1/siny=-1/√1-cos^2y=-1/√1-x^2

11.y=arctanx

x=tany

x'=1/cos^2y

y'=1/x'=cos^2y=1/sec^2y=1/1+tan^2x=1/1+x^2

12.y=arccotx

x=coty

x'=-1/sin^2y

y'=1/x'=-sin^2y=-1/csc^2y=-1/1+cot^2y=-1/1+x^2

另外在對雙曲函式shx,chx,thx等以及反雙曲函式arshx,archx,arthx等和其他較複雜的複合函式求導時通過查閱導數表和運用開頭的公式與

4.y=u土v,y'=u'土v'

5.y=uv,y=u'v+uv'

均能較快捷地求得結果。

對於y=x^n y'=nx^(n-1) ,y=a^x y'=a^xlna 有更直接的求導方法。

y=x^n

由指數函式定義可知,y>0

等式兩邊取自然對數

ln y=n*ln x

等式兩邊對x求導,注意y是y對x的複合函式

y' * (1/y)=n*(1/x)

y'=n*y/x=n* x^n / x=n * x ^ (n-1)

冪函式同理可證

函式求導什麼時候用導數定義求,什麼時

3樓:左華

一般情況下都是公式且適用於區間求導那種。對於定義求導。從定義來看他就是求一個點的倒數。

故一般用於點。具體例子如分段函式,當x=0,fx=0。當x≠0時fx=表示式。

這裡如果fx一階可導,那麼求導就應該分情況。x=0用定義求導。≠0用公式求導!!!

4樓:匿名使用者

題主為這個問題,可以看得出來對求導沒有好的理解,先來看導數的定義

求導的本質是對求的是函式在某點出的導數:該點處△y與△x比值在△x趨近於0時候的極限。

由於導數的定義可以知道求導實際上求導的是求出該點的切線方程的斜率,

而我們初學導數的時候有很多公式,比如x的平方求導為2x,sinx求導為cosx,這些全部是

由導數的定義得到的,以x的平方求導為例:

其他函式的求導公式推導也一樣。

任何時候求導我們都可以用定義來求。但是可以用定義來求不代表非要我們去用定義求,

因為任何函式形式的求導結果之前都已經推匯出來了,函式經過複合之後的求導法則

書中也給我們介紹了(有興趣可以自己去推導),我們要做的就是記住他,或者自己推導

出來,再利用總結出的求導公式就行了。當我們學會騎自行車的時候可以代替步行,但是

沒有必要非要去步行。

利用導數的定義求導。

5樓:匿名使用者

2/3*x^(-1/3)

6樓:銘修冉

(x^a)'=ax^(a-1)

=2/3x^(2/3-1)

=(2/3)/[x^(1/3)]

高數用導數定義求導,高數導數定義

就是冪函式 f x x 它的導數為 f x x 1 高數導數定義 導數就是某點切線的斜率 做 求導,積分,微分 題目最關鍵要記住公式,即使不懂定義也可以把題目做出來 積分就是微分的逆運算,微分像是把東西分解開,積分就像是把東西拼回去求導數跟求微分的過程是基本上一樣的,就是表達答案及過程的形式不同總之...

導數定義的問題,導數定義的問題

第一個可導是洛必達法則要求。第二個連續是倒數第二步成立的條件 不連續的話,左極限不等於右極限,函式沒意義。導數定義問題 這用得著計算麼bai?這就是新增的一du 個式子為了zhi湊出兩dao個導數的定義式來lim x趨於 內0 u x x v x x u x v x x不能直接容計算 那麼湊上u x...

如何講解導數的定義

導數是微積分中的重要概念。導數定義為 當自變數的增量趨於零時,因變數的增量與自變數的增量之商的極限。在一個函式存在導數時,稱這個函式可導或者可微分。可導的函式一定連續。不連續的函式一定不可導。物理學 幾何學 經濟學等學科中的一些重要概念都可以用導數來表示。如,導數可以表示運動物體的瞬時速度和加速度 ...