怎麼證明四點共圓,如何證明四點共圓

2023-06-26 23:20:03 字數 2681 閱讀 2955

1樓:內蒙古恆學教育

證明四點共圓的方法如下:1、對角互補的四邊形,四點共圓。

2、外角等於內對角的四邊形,四點共圓。

3、同底同側的頂角相等的兩個三角形,四點共圓。

4、到定點的距離等於定長的四個點,四點共圓。

2樓:白子屢

證明四點共圓有下述一些基本方法:

方法1從被證共圓的四點中先選出三點作一圓,然後證另一點也在這個圓上,若能證明這一點,即可肯定這四點共圓。

方法2把被證共圓的四個點連成共底邊的兩個三角形,且兩三角形都在這底邊的同側,若能證明其頂角相等(同弧所對的圓周角相等),從而即可肯定這四點共圓. (若能證明其兩頂角為直角,即可肯定這四個點共圓,且斜邊上兩點連線為該圓直徑。)

方法3把被證共圓的四點連成四邊形,若能證明其對角互補或能證明其一個外角等於其鄰補角的內對角時,即可肯定這四點共圓。

方法4把被證共圓的四點兩兩連成相交的兩條線段,若能證明它們各自被交點分成的兩線段之積相等,即可肯定這四點共圓(根據相交弦定理​的逆定理);或把被證共圓的四點兩兩連結並延長相交的兩線段,若能證明自交點至一線段兩個端點所成的兩線段之積等於自交點至另一線段兩端點所成的兩線段之積,即可肯定這四點也共圓。(根據托勒密定理的逆定理)

方法5證被證共圓的點到某一定點的距離都相等,從而確定它們共圓.既連成的四邊形三邊中垂線有交點,即可肯定這四點共圓.

上述五種基本方法中的每一種的根據,就是產生四點共圓的一種原因,因此當要求證四點共圓的問題時,首先就要根據命題的條件,並結合圖形的特點,在這五種基本方法中選擇一種證法,給予證明.

如何證明四點共圓

3樓:候遠由雁

方法1從被證共圓的四點中先選出三點作一圓,然後證另一點也在這個圓上,若能證明這一點,即可肯定這四點共圓.

方法2把被證共圓的四個點連成共底邊的兩個三角形,且兩三角形都在這底邊的同側,若能證明其頂角相等,從而即可肯定這四點共圓.

若能證明其兩頂角為直角,即可肯定這四個點共圓,且斜邊上兩點連線為該圓直徑。)

方法3把被證共圓的四點連成四邊形,若能證明其對角互補或能證明其一個外角等於其鄰補角的內對角時,即可肯定這四點共圓.

方法4把被證共圓的四點兩兩連成相交的兩條線段,若能證明它們各自被交點分成的兩線段之積相等,即可肯定這四點共圓;或把被證共圓的四點兩兩連結並延長相交的兩線段,若能證明自交點至一線段兩個端點所成的兩線段之積等於自交點至另一線段兩端點所成的兩線段之積,即可肯定這四點也共圓.(根據托勒密定理的逆定理)

方法5證被證伐恭崔枷詔磺措委膽蓮共圓的點到某一定點的距離都相等,從而確定它們共圓.

上述五種基本方法中的每一種的根據,就是產生四點共圓的一種原因,因此當要求證四點共圓的問題時,首先就要根據命題的條件,並結合圖形的特點,在這五種基本方法中選擇一種證法,給予證明.

4樓:廖智渠衣

根據圓內四邊形的一些定理,它個逆定理也可判定四點共圓。

1、圓的內接四邊形的兩對角和是180度,反之,如果四邊形的兩對角和是180,那麼四點共圓。

2、在圓裡,同弦角相等。設a、b、c、d四點在圓上,明顯,ab弦所對的角∠acb=∠adb。反之,如果∠acb=∠adb,那四點共圓。常用的就是這兩個。

證明四點共圓有哪些方法

5樓:匿名使用者

常用的方法有:

1.對角互補的四邊形,四點共圓;

2.外角等於內對角的四邊形,四點共圓;

3.同底同側的頂角相等的兩個三角形,四點共圓;

4.到定點的距離等於定長的四個點,四點共圓。

6樓:請叫我作文哥

1.對角互補的四邊形,四點共圓;

2.外角等於內對角的四邊形,四點共圓;

3.同底同側鄧頂角的兩個三角形,四點共圓;

4.到定點的距離等於定長的四個點,四點共圓。

7樓:拋下思念

證明四點共圓有下述一些基本方法:

方法1 從被證共圓的四點中先選出三點作一圓,然後證另一點也在這個圓上,若能證明這一點,即可肯定這四點共圓.

方法2 把被證共圓的四點連成共底邊的兩個三角形,若能證明其兩頂角為直角,從而即可肯定這四個點共圓.

方法3 把被證共圓的四個點連成共底邊的兩個三角形,且兩三角形都在這底邊的同側,若能證明其頂角相等,從而即可肯定這四點共圓.

方法4 把被證共圓的四點連成四邊形,若能證明其對角互補或能證明其一個外角等於其鄰補角的內對角時,即可肯定這四點共圓.

方法5 把被證共圓的四點兩兩連成相交的兩條線段,若能證明它們各自被交點分成的兩線段之積相等,即可肯定這四點共圓;或把被證共圓的四點兩兩連結並延長相交的兩線段,若能證明自交點至一線段兩個端點所成的兩線段之積等於自交點至另一線段兩端點所成的兩線段之積,即可肯定這四點也共圓.方法6 證被證共圓的點到某一定點的距離都相等,從而確定它們共圓。

8樓:惠企百科

方法1: 把被證共圓的四個點連成共底邊的兩個三角形,且兩三角形都在這底邊的同側,若能證明其頂角相等,從而即可肯定這四點共圓。(可以說成:

若線段同側二點到線段兩端點連線夾角相等,那麼這二點和線段二端點四點共圓)

方法2 :把被證共圓的四點連成四邊形,若能證明其對角互補或能證明其一個外角等於其鄰補角的內對角時,即可肯定這四點共圓。(可以說成:

若平面上四點連成四邊形的對角互補或一個外角等於其內對角,那麼這四點共圓)

證明四點共圓的公式,證明四點共圓的公式

編輯本段四點共圓 證明四點共圓的基本方法 證明四點共圓有下述一些基本方法 證明四點共圓有 1,同弧所對的圓周角相等,則四點共圓。2,四邊形兩對角的和等於180度,則四點共圓。3,四邊形中一個外角等於和它相鄰的對角,則四點共圓 證明四點共圓有哪些方法 常用的方法有 1.對角互補的四邊形,四點共圓 2....

如何用圓的定義證明對角互補四點共圓

設四個點為a b c d,則三角形abc有一個外接圓o,因為角a 角d 180度,所以角d是圓o中bc弦對應的圓周角,即四點共圓 對角互補的四邊形如何證明四點共圓?中考能用 用切割線定理證明 圓內接四邊形的對角和為180 並且任何一個外角都等於它的內對角。如四邊形abcd內接於圓o,延長ab和dc交...

四點共圓定理,四點共圓的判定和性質

如果一個四邊形的外角 等於它的內對角那麼這四個點共圓 四點共圓的判定和性質 什麼叫四點共圓,四點共圓有何定理,定義,和性質 對於平面中不在同一直線上的三個點,必定存在一個圓使得這三個點在圓周上,版所以 三點共圓 權 是沒有意義的。而 四點共圓 表示對於四個點,存在一個圓使得四個點都在圓周上。這個條件...