已知三角形三條邊怎麼求面積,已知三角形的三邊長如何求面積?

2021-05-13 09:57:34 字數 5741 閱讀 5097

1樓:花降如雪秋風錘

已知三角形的三邊,可以使用海**式直接計算出三角形的面積,公式中三角形的面積s=√p(p-a)(p-b)(p-c),其中p=(a+b+c),a,b,c是三角形的三條邊。

海**式又譯作希**式、海龍公式、希羅公式、海倫-秦九韶公式。它是利用三角形的三條邊的邊長直接求三角形面積的公式。相傳這個公式最早是由古希臘數學家阿基米德得出的,而因為這個公式最早出現在海倫的著作《測地術》中,所以被稱為海**式。

中國秦九韶也得出了類似的公式,稱三斜求積術。

擴充套件資料:

海**式的推導過程:

設三角形的三邊a、b、c的對角分別為a、b、c,則餘弦定理為

cosc = (a^2+b^2-c^2)/2ab

s=1/2*ab*sinc

=1/2*ab*√(1-cos^2 c)

=1/2*ab*√[1-(a^2+b^2-c^2)^2/4a^2*b^2]

=1/4*√[4a^2*b^2-(a^2+b^2-c^2)^2]

=1/4*√[(2ab+a^2+b^2-c^2)(2ab-a^2-b^2+c^2)]

=1/4*√[(a+b)^2-c^2][c^2-(a-b)^2]

=1/4*√[(a+b+c)(a+b-c)(a-b+c)(-a+b+c)]

設p=(a+b+c)/2

則p=(a+b+c)/2, p-a=(-a+b+c)/2, p-b=(a-b+c)/2,p-c=(a+b-c)/2,

上式=√[(a+b+c)(a+b-c)(a-b+c)(-a+b+c)/16]

=√[p(p-a)(p-b)(p-c)]

所以,三角形abc面積s=√[p(p-a)(p-b)(p-c)]

2樓:三樂大掌櫃

這道題知道三角形三條邊,如何求面積?巧妙應用海**式

3樓:我不是他舅

設a=20,b=16,c=11

則由余弦定理

cosa=(16²+11²-20²)/(2*16*11)=-23/352

則sina=√(1-cos²a)=5√4935/352所以面積s=1/2*16*11*5√4935/352=5√4935/4平方釐米

4樓:酆閎貳幻兒

已知三角形三條邊求面積,一般採用海侖公式:

s=√[p(p-a)(p-b)(p-c)]a,b,c,

------三角形邊長

p=(a+b+c)/2

p=(6+8.1+3.6)/2=8.85

(p-a)=(8.85-6)=2.85

(p-b)=(8.85-8.1)=0.

75(p-c)=(8.85-3.6)=5.

25s=√[p(p-a)(p-b)(p-c)]=√[8.85*2.85*0.

75*5.25]

=9.9656

5樓:解密陝西中考

三角形的面積公式有很多,已知三條邊的話,可以根據海**式來求出來

6樓:菠蘿吹雪

海**式:設p=(a+b+c)/2 則:面積s=√p(p-a)(p-b)(p-c)

已知三角形的三邊長如何求面積?

7樓:老衲吃橘子

各類三角形求面積方式如下所示:

1.已知三角形底a,高h,則 s=ah/2

2.已知三角形三邊a,b,c,則

(海**式)(p=(a+b+c)/2)

s=sqrt[p(p-a)(p-b)(p-c)]

=sqrt[(1/16)(a+b+c)(a+b-c)(a+c-b)(b+c-a)]

=1/4sqrt[(a+b+c)(a+b-c)(a+c-b)(b+c-a)]

3.已知三角形兩邊a,b,這兩邊夾角c,則s=1/2

absinc,即兩夾邊之積乘夾角的正弦值。

4.設三角形三邊分別為a、b、c,內切圓半徑為r

則三角形面積=(a+b+c)r/2

5.設三角形三邊分別為a、b、c,外接圓半徑為r

則三角形面積=abc/4r

6.行列式形式

為三階行列式,此三角形

在平面直角座標系內

選取最好按逆時針順序從右上角開始取,因為這樣取得出的結果一般都為正值,如果不按這個規則取,可能會得到負值,但不要緊,只要取絕對值就可以了,不會影響三角形面積的大小。

該公式的證明可以藉助「兩夾邊之積乘夾角的正弦值」的面積公式 。

7.海倫——秦九韶三角形中線面積公式:

s=√[(ma+mb+mc)*(mb+mc-ma)*(mc+ma-mb)*(ma+mb-mc)]/3

其中ma,mb,mc為三角形的中線長.

8.根據三角函式求面積:

s= ½ab sinc=2r² sinasinbsinc= a²sinbsinc/2sina

注:其中r為外切圓半徑。

9.根據向量求面積:

其中,(x1,y1,z1)與(x2,y2,z2)分別為向量ab與ac在空間直角座標系下的座標表達,即:

向量臨邊構成三角形面積等於向量臨邊構成平行四邊形面積的一半。

三角形面積公式是指使用算式計算出三角形的面積,同一平面內,且不在同一直線的三條線段首尾順次相接所組成的封閉圖形叫做三角形,符號為△。

常見的三角形按邊分有等腰三角形(腰與底不等的等腰三角形、腰與底相等的等腰三角形即等邊三角形)、不等腰三角形;按角分有直角三角形、銳角三角形、鈍角三角形等,其中銳角三角形和鈍角三角形統稱斜三角形。

8樓:千山鳥飛絕

已知三角形的三邊長分別為a、b、c,根據海**式則三角形的面積公式如下圖所示,其中公式裡的p為半周長:

1、解析過程如下圖所示:

2、舉例計算過程如下:

9樓:叫那個知道

海倫-秦九韶公式

已知三邊是a,b,c

令p=(a+b+c)/2

則s=√[p(p-a)(p-b)(p-c)]

10樓:匿名使用者

利用海**式。

三邊是a,b,c;令p=(a+b+c)/2;則s=√[p(p-a)(p-b)(p-c)]

海**式:

假設在平面內,有一個三角形,邊長分別為a、b、c,三角形的面積s可由以下公式求得:

而公式裡的p為半周長(周長的一半):

注:"metrica"《度量論》手抄本中用s作為半周長,所以兩種寫法都是可以的,但多用p作為半周長。

它的特點是形式漂亮,便於記憶。

擴充套件資料公式意義

海**式的提出為三角形和多邊形的面積計算提供了新的方法和思路,在知道三角形三邊的長而不知道高的情況下使用海**式可以更快更簡便的求出面積,比如說在測量土地的面積的時候,不用測三角形的高,只需測兩點間的距離,就可以方便地匯出答案。

11樓:真心話啊

(面積=底×高÷2。其中,a是三角形的底,h是底所對應的高)註釋:三邊均可為底,應理解為:三邊與之對應的高的積的一半是三角形的面積。這是面積法求線段長度的基礎。

所有求三角形面積公式:

8、在平面直角座標系內,a(a,b),b(c,d),c(e,f)構成之三角形面積為

(正三角形面積公式,a是三角形的邊長)

(其中,r是外接圓半徑;r是內切圓半徑)

13、設三角形三邊為ac,bc,ab,點d垂直於ab,為三角形abc的高由於db=bc*cosb, cosb可用餘弦定理式表示。

利用餘弦定理求得:再利用勾股定理求得cd再用面積=底×高÷2,最終得出面積公式。

12樓:柿子的丫頭

海倫-秦九韶公式

三邊是a,b,c

令p=(a+b+c)/2

則s=√[p(p-a)(p-b)(p-c)]

已知三角形的三邊長,求三角形面積,有公式:

擴充套件資料

摺疊直角三角形

解直角三角形需要用到勾股定理(弦)定理,又稱畢達哥拉斯定理或畢氏定理(pythagoras theorem)。數學公          式中常寫作a^2+b^2=c^2,其中a和b分別為直角三角形兩直角邊,c為斜邊。

勾股弦數是指一組能使勾股定理關係成立的三個正整數。比如:3,4,5。

常見的勾股弦數有:3,4,5;6,8,10;5,12,13;10,24,26;等等。

其中,互素的勾股陣列成為基本勾股陣列,例如:3,4,5;5,12,13;8,15,17等等

摺疊斜三角形

在三角形abc中,角a,b,c的對邊分別為a,b,c. 則有

(1)正弦定理

a/sina=b/sinb= c/sinc=2r (r為三角形外接圓半徑)。

(2)餘弦定理

a^2=b^2+c^2-2bc*cosa;

^2=a^2+c^2-2ac*cosb;

c^2=a^2+b^2-2ab*cosc。

備註:勾股定理其實是餘弦定理的一種特殊情況。

(3)餘弦定理變形公式

cosa=(b^2+c^2-a^2)/2bc;

cosb=(a^2+c^2-b^2)/2ac;

cosc=(a^2+b^2-c^2)/2ab。

13樓:匿名使用者

已知三角形的三邊分別是a、b、c,

先算出周長的一半s=1/2(a+b+c)

則該三角形面積s=根號[s(s-a)(s-b)(s-c)]

這個公式叫海倫——秦九昭公式

證明:設三角形的三邊a、b、c的對角分別為a、b、c,

則根據餘弦定理c²=a²+b²-2ab·cosc,得

cosc = (a²+b²-c²)/2ab

s=1/2*ab*sinc

=1/2*ab*√(1-cos²c)

=1/2*ab*√[1-(a²+b²-c²)²/4a²b²]

=1/4*√[4a²b²-(a²+b²-c²)²]

=1/4*√[(2ab+a²+b²-c²)(2ab-a²-b²+c²)]

=1/4*√

=1/4*√[(a+b+c)(a+b-c)(a-b+c)(-a+b+c)]

設s=(a+b+c)/2

則s=(a+b+c), s-a=(-a+b+c)/2, s-b=(a-b+c)/2, s-c=(a+b-c)/2,

上式=√[(a+b+c)(a+b-c)(a-b+c)(-a+b+c)/16]

=√[s(s-a)(s-b)(s-c)]

所以,三角形abc面積s=√[s(s-a)(s-b)(s-c)]

證明完畢

14樓:親咯就跑

根據三角函式可以求出某條邊上的高,然後求面積公式就算出來了!

15樓:匿名使用者

這三角形的三邊長可以通過做高的形式用正玄餘玄正切餘切來求面積

16樓:何

三角形的面積公式:底×高÷2

17樓:匿名使用者

求三角形的面積需要知道底和高的長度,只知道三邊長,除非相鄰兩邊互相垂直,否則無法求面積。

18樓:西貝

海**式

s=√p(p-a)(p-b)(p-c)

p=a+b+c

19樓:匿名使用者

三角形的面積=底×高÷2

20樓:匿名使用者

已知三角形的三個邊長,求其面積!

21樓:匿名使用者

面積等於二分之一向量ab×向量ac

知道三角形三邊怎麼求面積,已知三角形的三邊長如何求面積?

已知三角形的三邊分別是a b c,先算出周長的一半s 1 2 a b c 則該三角形面積s 根號 s s a s b s c 這個公式叫海倫 秦九昭公式 證明 設三角形的三邊a b c的對角分別為a b c,則根據餘弦定理c a b 2ab cosc,得 cosc a b c 2ab s 1 2 a...

已知三角形角度數,如何求三條邊的長度急

看圖,這麼多個三角形,已知三個角度數,可以確定一個三角形麼?答案是不能的 這麼多個三角形對應的角度都相同 根本求不出來 有無數個這種三角形 必須知道一條邊長 知道一個任意三角形的三個角的度數,如何求它三條邊的長度?如果你有初二文化程度的話,就會學過相似三角形。你就會知道 已知三角形的兩個內角度數 兩...

輸入三角形的三條邊判斷能否構成三角形若能

include indlude define acute angel 1 銳角 define right angel 2 直角 define obtuse angel 3 鈍角 bool is int a,int b,int c return r int get type int a,int b,i...