1樓:姬覓晴
一、去分母:
方程兩邊同時乘以最簡公分母,將分式方程化為整式方程;若遇到互為相反數時,不要忘了改變符號。
二、移項:
移項,若有括號應先去括號,注意變號,合併同類項,把係數化為1 求出未知數的值;
三、驗根:
求出未知數的值後必須驗根,因為在把分式方程化為整式方程的過程中,擴大了未知數的取值範圍,可能產生增根。
驗根時把整式方程的根代入最簡公分母,如果最簡公分母等於0,這個根就是增根。否則這個根就是原分式方程的根。若解出的根都是增根,則原方程無解。
如果分式本身約分了,也要代入進去檢驗。在列分式方程解應用題時,不僅要檢驗所得解的是否滿足方程式,還要檢驗是否符合題意。
2樓:
:①去分母(方程兩邊同時乘以最簡公分母,將分式方程化為整式方程)
;②按解整式方程的步驟(移項,合併同類項,係數化為1)求出未知數的值
;③驗根(求出未知數的值後必須驗根,因為在把分式方程化為整式方程的過程中,擴大了未知數的取值範圍,可能產生增根).
驗根時把整式方程的根代入最簡公分母,如果最簡公分母等於0,這個根就是增根。否則這個根就是原分式方程的根。若解出的根是曾根,則原方程無解。
如果分式本身約了分,也要帶進去檢驗。
在列分式方程解應用題時,不僅要檢驗所的解是否滿足方程式,還要檢驗是否符合題意
因式分解
1提公因式法:一般地,如果多項式的各項有公因式,可以把這個公因式提到括號外面,將多項式寫成因式乘積的形式,這種分解因式的方法叫做提公因式法.
am+bm+cm=m(a+b+c)
運用公式法
①平方差公式:.
a^2-b^2=(a+b)(a-b)
②完全平方公式:
a^2±2ab+b^2=(a±b)^2
③立方和公式:a^3+b^3=
(a+b)(a^2-ab+b^2).
立方差公式:a^3-b^3=
(a-b)(a^2+ab+b^2).
④完全立方公式:
a^3±3a^2b+3ab^2±b^3=(a±b)^3
⑤a^n-b^n=(a-b)[a^(n-1)+a^(n-2)b+……+b^(n-2)a+b^(n-1)]
a^m+b^m=(a+b)[a^(m-1)-a^(m-2)b+……-b^(m-2)a+b^(m-1)](m為奇數)
3分組分解法:把一個多項式分組後,再進行分解因式的方法.
4拆項、補項法
拆項、補項法:把多項式的某一項拆開或填補上互為相反數的兩項(或幾項),使原式適合於提公因式法、運用公式法或分組分解法進行分解;要注意,必須在與原多項式相等的原則進行變形
十字相乘法
①x^2+(p
q)x+pq型的式子的因式分解
這類二次三項式的特點是:二次項的係數是1;常數項是兩個數的積;一次項係數是常數項的兩個因數的和.因此,可以直接將某些二次項的係數是1的二次三項式因式分解:
x^2+(p
q)x+pq=(x+p)(x+q)
②kx^2+mx+n型的式子的因式分解
如果能夠分解成k=ac,n=bd,且有ad+bc=m
時,那麼
kx^2+mx+n=(ax
b)(cxd)a
\-----/b
ac=k
bd=n
c/-----\d
ad+bc=m
例如把x^2-x-2=0分解因式
因為x^2=x乘x
-2=-2乘1x-2
x1對角線相乘再加=x-2x=-x
橫著寫(x-2)(x+1)
希望你取得進步
3樓:饒政凱
分式方程概念
分式方程是方程中的一種,且分母裡含有字母的方程叫做分式方程。例如100/x=95/x+0.35
補充:該部分知識屬於初等數學知識,一般在初二的時候學習。
[編輯本段]分式方程的解法
①去分母;②按解整式方程的步驟(移項,若有括號應去括號,注意變號,合併同類項,係數化為1)求出未知數的值;③驗根(求出未知數的值後必須驗根,因為在把分式方程化為整式方程的過程中,擴大了未知數的取值範圍,可能產生增根).
驗根時把整式方程的根代入最簡公分母,如果最簡公分母等於0,這個根就是增根。否則這個根就是原分式方程的根。若解出的根是增根,則原方程無解。
4樓:匿名使用者
一,內容綜述:
1.解分式方程的基本思想
在學習簡單的分式方程的解法時,是將分式方程化為一元一次方程,複雜的(可化為一元二次方程)分式方程的基本思想也一樣,就是設法將分式方程"轉化"為整式方程.即
分式方程 整式方程
2.解分式方程的基本方法
(1)去分母法
去分母法是解分式方程的一般方法,在方程兩邊同時乘以各分式的最簡公分母,使分式方程轉化為整式方程.但要注意,可能會產生增根.所以,必須驗根.
產生增根的原因:
當最簡公分母等於0時,這種變形不符合方程的同解原理(方程的兩邊都乘以或除以同一個不等於零的數,所得方程與原方程同解),這時得到的整式方程的解不一定是原方程的解.
檢驗根的方法:
將整式方程得到的解代入原方程進行檢驗,看方程左右兩邊是否相等.
為了簡便,可把解得的根直接代入最簡公分母中,如果不使公分母等於0,就是原方程的根;如果使公分母等於0,就是原方程的增根.必須捨去.
注意:增根是所得整式方程的根,但不是原方程的根,增根使原方程的公
分母為0.
用去分母法解分式方程的一般步驟:
(i)去分母,將分式方程轉化為整式方程;
(ii)解所得的整式方程;
(iii)驗根做答
(2)換元法
為了解決某些難度較大的代數問題,可通過添設輔助元素(或者叫輔助未知數)來解決.輔助元素的添設是使原來的未知量替換成新的未知量,從而把問題化繁為簡,化難為易,使未知量向已知量轉化,這種思維方法就是換元法.換元法是解分式方程的一種常用技巧,利用它可以簡化求解過程.
用換元法解分式方程的一般步驟:
(i)設輔助未知數,並用含輔助未知數的代數式去表示方程中另外的代數
式;(ii)解所得到的關於輔助未知數的新方程,求出輔助未知數的值;
(iii)把輔助未知數的值代回原設中,求出原未知數的值;
(iv)檢驗做答.
注意:(1)換元法不是解分式方程的一般方法,它是解一些特殊的分式方程的特殊方法.它的基本思想是用換元法把原方程化簡,把解一個比較複雜的方程轉化為解兩個比較簡單的方程.
(2)分式方程解法的選擇順序是先特殊後一般,即先考慮能否用換元法解,不能用換元法解的,再用去分母法.
(3)無論用什麼方法解分式方程,驗根都是必不可少的重要步驟.
5樓:呂蕤張簡曉凡
解:設摩托車速度為x千米/小時,則搶修車速度為1.5x千米/小時,據題意有:
(30/x)-
[30/(1.5x)]=
15/60
等式左右兩邊各項同時乘以6x,得:1.5x=180-120
解得;x=40
,經檢驗,x
=40是原方程的解,即摩托車速度是40千米/小時,所以,搶修車的速度為:40
*1.5=60
千米/小時答略
6樓:愛tvxq支援他們
很簡單的,例如
2-x除以3+x=1除以2+1除以x+3
2【2-x】=3+x+2
x=負的三分之一
經檢驗;x的值是原分式方程的解
7樓:匿名使用者
先去分母,方程兩邊同乘以分母式,然後再以整式方程解法做。
比如,y=(2+5x)/x²
x²y=2+5x
8樓:匿名使用者
1.如果分式的分母不等於0時:可以直接在方程的兩邊同時乘以分母的最小公倍數,得到整式後,再合併同類項,即可解得。
2.如果分式的分母等於0時:可以把擁有公分母的未知項合併,常數項放在另一邊。之後就要討論了,分分母為0與不為0兩種情況,注意增根情況即可。
分式方程解法的標準 5
9樓:答題狂魔想升級
分式方程是方程中的一種,是指分母裡含有未知數的有理方程,或者等號左右兩邊至少有一項含有未知數,該部分知識屬於初等數學知識.
以下為解法:
①去分母
方程兩邊同時乘以最簡公分母,將分式方程化為整式方程;若遇到互為相反數時。不要忘了改變符號。
(最簡公分母:①係數取最小公倍數②出現的字母取最高次冪③出現的因式取最高次冪)
②移項移項,若有括號應先去括號,注意變號,合併同類項,把係數化為1 求出未知數的值;
③驗根(解)
求出未知數的值後必須驗根,因為在把分式方程化為整式方程的過程中,擴大了未知數的取值範圍,可能產生增根。
驗根時把整式方程的根代入最簡公分母,如果最簡公分母等於0,這個根就是增根。否則這個根就是原分式方程的根。若解出的根都是增根,則原方程無解。
如果分式本身約分了,也要代入進去檢驗。
在列分式方程解應用題時,不僅要檢驗所得解的是否滿足方程式,還要檢驗是否符合題意。
一般的,解分式方程時,去分母后所得整式方程的解有可能使原方程中分母為零,因此要將整式方程的解代入最簡公分母,如果最簡公分母的值不為零,則是方程的解.
★注意(1)注意去分母時,不要漏乘整式項。
(2)増根是分式方程去分母后化成的整式方程的根,但不是原分式方程的根。
(3)増根使最簡公分母等於0。
(4)分式方程中,如果x為分母,則x應不等於0。
10樓:匿名使用者
一,內容綜述:
1.解分式方程的基本思想
在學習簡單的分式方程的解法時,是將分式方程化為一元一次方程,複雜的(可化為一元二次方程)分式方程的基本思想也一樣,就是設法將分式方程"轉化"為整式方程.即
分式方程 整式方程
2.解分式方程的基本方法
(1)去分母法
去分母法是解分式方程的一般方法,在方程兩邊同時乘以各分式的最簡公分母,使分式方程轉化為整式方程.但要注意,可能會產生增根.所以,必須驗根.
產生增根的原因:
當最簡公分母等於0時,這種變形不符合方程的同解原理(方程的兩邊都乘以或除以同一個不等於零的數,所得方程與原方程同解),這時得到的整式方程的解不一定是原方程的解.
檢驗根的方法:
將整式方程得到的解代入原方程進行檢驗,看方程左右兩邊是否相等.
為了簡便,可把解得的根直接代入最簡公分母中,如果不使公分母等於0,就是原方程的根;如果使公分母等於0,就是原方程的增根.必須捨去.
注意:增根是所得整式方程的根,但不是原方程的根,增根使原方程的公
分母為0.
用去分母法解分式方程的一般步驟:
(i)去分母,將分式方程轉化為整式方程;
(ii)解所得的整式方程;
(iii)驗根做答
(2)換元法
為了解決某些難度較大的代數問題,可通過添設輔助元素(或者叫輔助未知數)來解決.輔助元素的添設是使原來的未知量替換成新的未知量,從而把問題化繁為簡,化難為易,使未知量向已知量轉化,這種思維方法就是換元法.換元法是解分式方程的一種常用技巧,利用它可以簡化求解過程.
用換元法解分式方程的一般步驟:
(i)設輔助未知數,並用含輔助未知數的代數式去表示方程中另外的代數
式; (ii)解所得到的關於輔助未知數的新方程,求出輔助未知數的值;
(iii)把輔助未知數的值代回原設中,求出原未知數的值;
(iv)檢驗做答.
注意:(1)換元法不是解分式方程的一般方法,它是解一些特殊的分式方程的特殊方法.它的基本思想是用換元法把原方程化簡,把解一個比較複雜的方程轉化為解兩個比較簡單的方程.
(2)分式方程解法的選擇順序是先特殊後一般,即先考慮能否用換元法解,不能用換元法解的,再用去分母法.
(3)無論用什麼方法解分式方程,驗根都是必不可少的重要步驟.
列分式方程解應用題的技巧,如何列分式方程解應用題
很高興為你解答 bai1 審清題意,du找出相等關係和數量zhi關dao系2 根據所找的數量關係設出未知數專 3 根據所找的相等關係和屬數量關係列出方程4 解這個分式方程 5 對所解的分式方程進行檢驗 即是不是原方程的解 6 寫出分式方程的解 至於怎樣找等量關係式,我只能告訴你我的技巧,從問題出發,...
解分式方程求過程,解分式方程的步驟
分解因式 ax ay bx by a x y b x y a b x y 我們把ax和ay分一組,bx和by分一組,利用乘法分配律,兩兩相配,立即解除了困難。同樣,這道題也可以這樣做。ax ay bx by x a b y a b a b x y 幾道例題 1.5ax 5bx 3ay 3by 解法 ...
分式方程中的曾根是這個分式方程的根嗎
不是,因為曾根是在解題的過程中加大了題目本身的條件產生的。比如,本來分母是不為0的,結果在去分母后,產生了分母可以為0的情況。分式方程有曾根 或無解 的題該怎麼做 先化簡 然後把未知數歸到一邊,按照題意把增根求出,分別帶入求值 先看定義域,算出來2個以上的根,迴帶進去檢驗 曾根,無解什麼區別 20 ...