如圖,在數軸上A點表示數a,B點表示數b,AB表示A點和B點

2021-03-22 05:13:29 字數 3800 閱讀 9629

1樓:狐狸

(1)∵|a+3|+(b+3a)2=0,

∴a+3=0,b+3a=0,解得a=-3,b=9,∴?3+9

2=3,

∴點c表示的數是3;

(2)∵ab=9+3=12,點p從a點以3個單位每秒向右運動,點q同時從b點以2個單位每秒向左運動,

∴ap=3t,bq=2t,pq=12-5t.∵ap+bq=2pq,

∴3t+2t=24-10t,解得t=85;

(3)∵pa+pb=ab為定值,pc先變小後變大,∴pa+pb

pc的值是變化的,

∴①錯誤,②正確;

∵bm=pb+ap2,

∴2bm=2pb+ap,

∴2bm-bp=pb+ap=ab=12.

如圖,在數軸上a點表示數a,b點表示數b,ab表示a點和b點之間的距離,且a,b滿足|a+2|+(

2樓:匿名使用者

(1)說明a=-2,b=6,因此,ab=b-a=8(2)c不可能在a左側,忽略。若c在ab之間,則ac+bc=3bc=ab=8,bc=8/3,c在2/3處

若c在b右側,則ac-bc=bc=ab=8,則c在14處(3)甲到原點的距離為s1=t+2,乙到原點的距離s2=(2t-6)的絕對值

當乙向左運動時,t<3,s2=6-2t=s1=t+2,解得t=4/3當乙向右運動時,t>3,s2=2t-6=s1=t+2,解得t=8所以,經歷的時間t=4/3或8

如圖,在數軸上a點表示數a,b點表示數b,ab表示a點和b點之間的距離,且a,b滿足a+2

3樓:彭柏奧

1、甲球與原點的距離為│

t-2│,乙球與原點的距離為 │2t-6│。

2、 由 │t-2│=│2t-6│=2│t-3│,其中 t≧0,可解得

當 0≦t<2 時,得 t=4,(不合前設) 當 2≤t<3 時,得 t=8/3

當 t≥3時,得 t=4

∴當 t=8/3 或 t=4 時,甲乙兩小球到原點的距離相等。

4樓:匿名使用者

|a+2|+(b+3a)^2=0

所以a=-2 b=-3a=6

甲到原點距離 2 乙到原點距離 6

甲、乙兩小球到原點的距離相等時經歷的時間為4秒距離擋板為2個單位

不好意思,剛看到你的提問,希望對你有幫助。以後有數學題,你可以給我的知道發資訊,我可以較快解決你的問題~

如圖,在數軸上a點表示數a,b點表示數b,ab表示a點和b點之間的距離, 且a,b滿足a+2的絕對

5樓:tony羅騰

解: ∵│(a+2)│+(b+3a)²=0 ∴a=-2,

b=6。

(1) ab的距離=│b-a│= 8

(2)設c點的值為c。由 ac=2bc 得 │c-a│=2│c-b│,即│c+2│=2│c-6│,

則當c<-2時,得c=14,(不合前設)

當-2≦c<6時,得c=10/3

當c>6時,得c=14

所以 ac=2bc 時 c=10/3,或 c=14

(3)1、甲球與原點的距離為 │t-2│,乙球與原點的距離為 │2t-6│。

2、 由 │t-2│=│2t-6│=2│t-3│,其中 t≧0,可解得

當 0≦t<2 時,得 t=4,(不合前設) 當 2≤t<3 時,得 t=8/3

當 t≥3時,得 t=4

∴當 t=8/3 或 t=4 時,甲乙兩小球到原點的距離相等。

如圖,在數軸上a點表示數a,b點表示數b,ab表示a點和b點之間的距離,且a、b滿足|a+2|+(b+3a)2=0(1)求

6樓:百度使用者

||(1)∵|a+2|+(b+3a)2=0,33或c=14;

(3)①∵甲球運動的路程為:1?t=t,oa=2,∴甲球與原點的距離為:t+2;

乙球到原點的距離分兩種情況:

(ⅰ)當0<t≤3時,乙球從點b處開始向左運動,一直到原點o,∵ob=6,乙球運動的路程為:2?t=2t,∴乙球到原點的距離為:6-2t;

(ⅱ)當t>3時,乙球從原點o處開始一直向右運動,此時乙球到原點的距離為:2t-6;

②當0<t≤3時,得t+2=6-2t,

解得t=43;

當t>3時,得t+2=2t-6,

解得t=8.

故當t=4

3秒或t=8秒時,甲乙兩小球到原點的距離相等.

若數軸上點a表示的數是-4,且點b到點a的距離為2016,則點b表示的數是______

7樓:歡歡喜喜

若數軸上點a表示的數是-4,且點b到點a的距離為2016, 則點b表示的數是-2020或2012。如圖:

8樓:聽不清啊

點b表示的數是__2012_或_-2020__

9樓:匿名使用者

-2020或2012

點a,b,c是數軸上的三個點,且bc=2ab.已知點a表示的數是-1,點b表示的數是3,點c表示的數是______

10樓:我是一個麻瓜啊

c表示的數是11或-5。

∵點a表示的數是-1,點b表示的數是3,

∴ab=|-1-3|=4;

又∵bc=2ab,

∴bc=2×4=8.

①若c在b的右邊,其座標應為3+8=11;

②若c在b的左邊,其座標應為3-8=-5;

故點c表示的數是11或-5。

11樓:啊陌

∵點a表示的數是-1,點b表示的數是3,

∴ab=|-1-3|=4;

又∵bc=2ab,

∴bc=2×4=8.

①若c在b的右邊,其座標應為3+8=11;

②若c在b的左邊,其座標應為3-8=-5;

故點c表示的數是11或-5.

如圖,在數軸上a點表示數a,b點表示數b,ab表示a點和b點之間的距離, __a______o_____________b____→

12樓:匿名使用者

(1)解題思路,絕對值和平方後都是非負數,所以a+3=0

b+3a=0

得出a=-3,b=9

ab=12

(2)思路:距離是絕對值,是正數,設點c為x則:︳x-(-3)︳=︳3(x-9)︳

分解:x+3=3x-27或x+3=27-3x得x=15或x=6

(3)1、甲到遠點距離=t+3

乙到原點距離=2t-9的絕對值

(注:乙在b點左側時為9-2t,在b點右側時為2t-9,合起來用絕對值表示,因為距離是非負數)

2、t+3=︳2t-9︳

分解t+3=2t-9或t+3=9-2t

得t=12,或t=2

如圖,在數軸上a點表示數a,b點表示數 b,ab表示a點和b點之間的距離, __a______o__

13樓:匿名使用者

(1)a+2=0,b+3a=0 所以a=-2,b=6(2)c=10/3或者14

(3)1、甲:t+2 乙:當t小於

等於6時,6-t;當t大於6時,t-6.

2、當t小於等於6時,t+2=6-t,所以t=2.當t大於6時,沒有成立的數。

不好意思,剛看到你的提問,希望對你有幫助。以後有數學題,你可以給我的知道發資訊,我可以較快解決你的問題~

點A B在數軸上分別表示有理數a,b,則A和B兩點間的距離A

顯然是x b時,y c a 如果是選擇填空,畫圖直觀就可看出無論x在 三段距離的和都回要包含a到c的距 答離,那麼顯然x b時,y正好是c到a的距離,直接寫結果。如果是解答題,分三段討論 首先,x大於或等於c時,y 3x a b c,那麼y要大於或等於3c a b c也就是 c a c b 同樣,x...

數學實驗室點AB在數軸上分別表示有理數ab,AB兩點

1 2 5 3,1 3 4 2 x 2 x 2 3 根據數軸上兩點之間的距離回定義有 x 1 x 3 表示答x與 3兩點的距離之和,根據幾何意義分析可知 當x在 3與1之間時,x 1 x 3 有最小值4 故答案為 1 3,4 2 x 2 閱讀材料 我們知道 點a,b在數軸上分別表示有理數a,b,a,...

閱讀材料我們知道點A,B在數軸上分別表示有理數a,b,A

由材料,原式表示的幾 何意義為x到3的距離 x到 1的距離之和 7,又3 1 4 7,故該點不可能位於 1和3之間,分兩種情況討論 1 該點在 1左邊,得 1 x 3 x 7,解得x 5 2 2 該點在3右邊,得x 1 x 3 7,解得x 9 2.綜上x的值為 5 2或9 2 閱讀材料 我們知道,若...