1樓:匿名使用者
應當根據奇偶性的定義來判斷,複合層數如果更高呢?這裡規律不是很明顯的。上述敘述也是不準確的,內層是y=2x,外層應當是y= x^3
複合函式的奇偶性特點是:「內偶則偶,內奇同外為什麼
2樓:無基者無罪
解釋如下:
設一個函式為f(u),且u=g(x),所以變形成為f[g(x)]=f(x)。
若g(x)是偶函式,則f(-x)=f[g(-x)]=f[g(x)]=f(x),所以f(x)是偶函式。
若g(x)是奇函式,則f(-x)=f[g(-x)]=f[-g(x)]=f(-u),如果f(u)奇,則f(-x)=f(-u)=-f(u)=-f(x)
f(x)奇;如果f(u)偶,則f(-x)=f(-u)=f(u)=f(x),f(x)偶。所以f(x)的奇偶性與f(u)相同。
這就解釋了「內偶則偶,內奇同外」。
偶函式:如果對於函式f(x)的定義域內任意一個x,都有f(-x)=f(x),則函式f(x)就叫偶函式。
奇函式:如果對於函式f(x)的定義域內任意一個x,都有f(-x)=-f(x),則函式f(x)就叫奇函式。
3樓:我是一個麻瓜啊
f(g(x)),若g(x)為偶函式,當任意取關於x對稱的兩點x1,-x1時,有g(x1)=g(-x1),所以f(g(x1))=f(g(-x1)),因此內偶則偶。
f(g(x)),若g(x)為奇函式,當任意取關於x對稱的兩點x1,x2時,有-g(x1)=g(-x1),所以當f為偶時,f(g(x1))=f(-g(x1))=f(g(-x1))則整體為偶,當f為奇時,f(g(x1))=-f(-g(x1))=-f(g(-x1))則整體為奇。
對於f(x)=f[g(x)]:
1、若g(x)是偶函式且f(x)是偶函式,則f[x]是偶函式。
2、若g(x) 是偶函式且f(x)是奇函式,則f[x]是偶函式。
3、若g(x)是奇函式且f(x)是奇函式,則f[x]是奇函式。
4、若g(x)是奇函式且f(x)是偶函式,則f[x]是偶函式。
4樓:咋的他還在
原理f(x)=f(u),u=g(x),複合函式f(x)=f(g(x))。
如果內層函式u=g(x)是偶函式,g(-x)=g(x),f(-x)=f(g(-x)) =f(g(x))= f(x),則複合函式f(x)是偶函式。所以內偶則偶。
同理,內奇同外。
它的意思是:如果複合函式裡面為偶函式,則這個複合函式整體為偶函式;如果裡面為奇函式,則需要看外面的那個函式的奇偶性。
設函式y=f(u)的定義域為du,值域為mu,函式u=g(x)的定義域為dx,值域為mx,如果mx∩du≠ø,那麼對於mx∩du內的任意一個x經過u;有唯一確定的y值與之對應,則變數x與y之間通過變數u形成的一種函式關係,這種函式稱為複合函式(***posite function),記為:y=f[g(x)],其中x稱為自變數,u為中間變數,y為因變數(即函式)。
參考資料
5樓:乘金蘭是嫣
它的意思是,如果複合函式裡面為偶函式則這個複合函式整體為偶函式
如果裡面為奇函式
則需要看外面的那個函式的奇偶性
意思就是這個時候外面如果是奇函式則這個複合函式整體為奇函式
是偶函式的話
則複合函式為偶函式
其實你只需要記
內奇外奇為奇
就可以了
因為其他情況都是偶函式
6樓:羊舌芙同巳
f(g(x)),若g(x)為偶函式,當任意取關於x對稱的兩點x1,-x1時,有g(x1)=g(-x1),所以f(g(x1))=f(g(-x1))。因此內偶則偶。
f(g(x)),若g(x)為奇函式,當任意取關於x對稱的兩點x1,x2時,有-g(x1)=g(-x1),所以當f為偶時,f(g(x1))=f(-g(x1))=f(g(-x1))則整體為偶。當f為奇時,f(g(x1))=-f(-g(x1))=-f(g(-x1))則整體為奇。
因從對稱的兩個x的值去討論g的值,在用g的值去討論f的值就可以找到之間的關係了。
7樓:
f(u)與u=g(x)合成為f[g(x)]=f(x)。
如果g(x)是偶函式,則f(-x)=f[g(-x)]=f[g(x)]=f(x),所以f(x)是偶函式。
如果g(x)是奇函式,則f(-x)=f[g(-x)]=f[-g(x)]=f(-u),如果f(u)奇,則f(-x)=f(-u)=-f(u)=-f(x),f(x)奇;如果f(u)偶,則f(-x)=f(-u)=f(u)=f(x),f(x)偶。所以f(x)的奇偶性與f(u)相同。
這就是「內偶則偶,內奇同外」。
複合函式的奇偶性特點是:「內偶則偶,內奇同外 為什麼
8樓:
f(g(x)),若g(x)為偶
copy函式,當任意取關於
x對稱的兩點x1,-x1時,有g(x1)=g(-x1),所以f(g(x1))=f(g(-x1))。因此內偶則偶。
f(g(x)),若g(x)為奇函式,當任意取關於x對稱的兩點x1,x2時,有-g(x1)=g(-x1),所以當f為偶時,f(g(x1))=f(-g(x1))=f(g(-x1))則整體為偶。當f為奇時,f(g(x1))=-f(-g(x1))=-f(g(-x1))則整體為奇。
因從對稱的兩個x的值去討論g的值,在用g的值去討論f的值就可以找到之間的關係了。
複合函式奇偶性。內奇同外,內偶則偶。對於外層函式有什麼要求嗎?
9樓:匿名使用者
能形成複合函式,即外層函式的定義域要是內層函式值域的一個子集。
怎麼判斷複合函式的奇偶性
10樓:呼呼__大神
外奇內奇為奇,外奇內偶為偶,外偶內奇為偶,外偶內偶為偶.
f=f(g(x)),若g(x)為偶函式,當任意取關於x對稱的兩點x1,-x1時,有g(x1)=g(-x1),所以f(g(x1))=f(g(-x1))。f為偶函式,因此內偶則偶。 f=f(g(x)),若g(x)為奇函式,當任意取關於x對稱的兩點x1,-x1時,有-g(x1)=g(-x1),所以當f為偶時,f(-g(x1))=f(g(-x1))則整體為偶。
當f為奇時,-f(-gx1))=-f(g(-x1))則整體為奇。
設函式y=f(x)的定義域為du,值域為mu,函式u=g(x)的定義域為dx,值域為mx,如果mx∩du≠ø,那麼對於mx∩du內的任意一個x經過u;有唯一確定的y值與之對應,則變數x與y之間通過變數u形成的一種函式關係,這種函式稱為複合函式(***posite function),記為:y=f[g(x)],其中x稱為自變數,u為中間變數,y為因變數(即函式)。
若函式y=f(u)的定義域是b,u=g(x)的定義域是a,則複合函式y=f[g(x)]的定義域是
d= 綜合考慮各部分的x的取值範圍,取他們的交集。
求函式的定義域主要應考慮以下幾點:
(1)當為整式或奇次根式時,r的值域;
(2)當為偶次根式時,被開方數不小於0(即≥0);
(3)當為分式時,分母不為0;當分母是偶次根式時,被開方數大於0;
(4)當為指數式時,對零指數冪或負整數指數冪,底不為0(如,中)。
(5)當是由一些基本函式通過四則運算結合而成的,它的定義域應是使各部分都有意義的自變數的值組成的集合,即求各部分定義域集合的交集。
(6)分段函式的定義域是各段上自變數的取值集合的並集。
(7)由實際問題建立的函式,除了要考慮使解析式有意義外,還要考慮實際意義對自變數的要求
(8)對於含引數字母的函式,求定義域時一般要對字母的取值情況進行分類討論,並要注意函式的定義域為非空集合。
(9)對數函式的真數必須大於零,底數大於零且不等於1。
(10)三角函式中的切割函式要注意對角變數的限制。
設y=f(u)的最小正週期為t1,μ=φ(x)的最小正週期為t2,則y=f(μ)的最小正週期為t1*t2,任一週期可表示為k*t1*t2(k屬於r+)
依y=f(u),μ=φ(x)的單調性來決定。即"增+增=增;減+減=增;增+減=減;減+增=減",可以簡化為"同增異減"。
11樓:樓藍可兒
判斷複合函式的奇偶性其實只要掌握好奇偶函式的定義,自己推一下是非常容易的。舉例說明如下:
記f(x)=f[g(x)]——複合函式,則f(-x)=f[g(-x)]
如果g(x)是奇函式,即g(-x)=-g(x) ==f(-x)=f[-g(x)],
則當f(x)是奇函式時,f(-x)=-f[g(x)]=-f(x),f(x)是奇函式;
當f(x)是偶函式時,f(-x)=f[g(x)]=f(x),f(x)是偶函式。
如果g(x)是偶函式,即g(-x)=g(x) =f(-x)=f[g(x)]=f(x),f(x)是偶函式。
所以由兩個函式複合而成的複合函式,當裡層的函式是偶函式時,複合函式的偶函式,不論外層是怎樣的函式;當裡層的函式是奇函式、外層的函式也是奇函式時,複合函式是奇函式,當裡層的函式是奇函式、外層的函式是偶函式時,複合函式是偶函式。
在其它的場合,就不能判斷複合函式的奇偶性了。
12樓:周文大大好帥
複合函式的奇偶性特點是:」內偶則偶,內奇同
外」。f(g(x)),若g(x)為偶函式,當任意取關於x對稱的兩點x1,-x1時,有g(x1)=g(-x1),所以f(g(x1))=f(g(-x1))。因此內偶則偶。
13樓:匿名使用者
其實只要掌握好奇偶函式的定義,自己推一下是非常容易的。
記f(x)=f[g(x)]——複合函式,則f(-x)=f[g(-x)],
如果g(x)是奇函式,即g(-x)=-g(x) ==> f(-x)=f[-g(x)],
則當f(x)是奇函式時,f(-x)=-f[g(x)]=-f(x),f(x)是奇函式;
當f(x)是偶函式時,f(-x)=f[g(x)]=f(x),f(x)是偶函式。
如果g(x)是偶函式,即g(-x)=g(x) ==> f(-x)=f[g(x)]=f(x),f(x)是偶函式。
所以由兩個函式複合而成的複合函式,當裡層的函式是偶函式時,複合函式的偶函式,不論外層是怎樣的函式;當裡層的函式是奇函式、外層的函式也是奇函式時,複合函式是奇函式,當裡層的函式是奇函式、外層的函式是偶函式時,複合函式是偶函式。
在其它的情況下,就不能判斷複合函式的奇偶性了。
14樓:丁永健
無論複合函式有多少層,只有各層都為奇函式時,該複合函式才是奇函式,只要有一層或多層為偶函式,該複合函式就為偶函式。
函式的奇偶性中奇奇偶偶奇偶
其實你只要記得 bai1 奇 du 奇 奇 2 偶zhi 偶 偶 3 奇 偶 非奇非偶 其中,dao1 2 運用條件回 兩函式定義域相答同負號是不改變函式的奇偶性的,即若f x 是奇 偶 函式,f x 仍然是個奇 偶 函式。奇 奇 偶 偶 偶 偶 奇 偶 奇 函式的奇偶性中,一個奇函式加一個偶函式,...
複合函式的奇偶性怎麼判斷,怎麼判斷複合函式的奇偶性
記f x f g x 複合函式,則f x f g x 如果g x 是奇函式,即g x g x f x f g x 則當f x 是奇函式時,f x f g x f x f x 是奇函式 當f x 是偶函式時,f x f g x f x f x 是偶函式。如果g x 是偶函式,即g x g x f x ...
什麼是函式的奇偶性什麼樣的函式有奇偶性?
多麼簡單的問題啊 函式 奇偶性 奇函式在其對稱區間 a,b 和 b,a 上具有相同的單調性,即已知是奇函式,它在區間 a,b 上是增函式 減函式 則在區間 b,a 上也是增函式 減函式 偶函式在其對稱區間 a,b 和 b,a 上具有相反的單調性,即已知是偶函式且在區間 a,b 上是增函式 減函式 則...