1樓:吉祿學閣
圖形和幾何有很緊密的聯絡,一般來說,幾何問題通常要藉助圖形來解答,因為幾何是研究空間結構及性質的一門學科。
幾何圖形主要分為平面圖形和立體圖形的研究,這些就是通過研究圖形來解決幾何問題。
你題目所說的平面圖形,主要有三角形、平行四邊形、圓及圓錐曲線等。
2樓:匿名使用者
圓的周長由割圓術得出,面積是由將圓截成無數扇面,此時小扇面近似為三角形,一上一下拼為長方形,長為一半周長,寬為半徑,相乘得出面積。
3樓:小尹姑涼
ug g g ghj j
4樓:卓興富
困境的相關研究,在研究當中他把幾何學分為四個面向(dimension):
面向一:幾何是視覺化,畫圖及圖形的建構.
面向二:幾何是真實,物 世界的研究.
面向三:幾何是表徵 學的或是其他 能以視覺或物 方式呈現的媒介.
面向四:幾何是 學系統的一個範 .
圖形與幾何知識點整理
5樓:2088善心
a、圖形的認識
1、點,線,面
點,線,面:①圖形是由點,線,面構成的。②面與面相交得線,線與線相交得點。③點動成線,線動成面,面動成體。
與摺疊:①在稜柱中,任何相鄰的兩個面的交線叫做稜,側稜是相鄰兩個側面的交線,稜柱的所有側稜長相等,稜柱的上下底面的形狀相同,側面的形狀都是長方體。②n稜柱就是底面圖形有n條邊的稜柱。
截一個幾何體:用一個平面去截一個圖形,截出的面叫做截面。
檢視:主檢視,左檢視,俯檢視。
多邊形:他們是由一些不在同一條直線上的線段依次首尾相連組成的封閉圖形。
弧、扇形:①由一條弧和經過這條弧的端點的兩條半徑所組成的圖形叫扇形。②圓可以分割成若干個扇形。
2、角線:①線段有兩個端點。②將線段向一個方向無限延長就形成了射線。
射線只有一個端點。③將線段的兩端無限延長就形成了直線。直線沒有端點。
④經過兩點有且只有一條直線。
比較長短:①兩點之間的所有連線中,線段最短。②兩點之間線段的長度,叫做這兩點之間的距離。
角的度量與表示:①角由兩條具有公共端點的射線組成,兩條射線的公共端點是這個角的頂點。②一度的1/60是一分,一分的1/60是一秒。
角的比較:①角也可以看成是由一條射線繞著他的端點旋轉而成的。②一條射線繞著他的端點旋轉,當終邊和始邊成一條直線時,所成的角叫做平角。
始邊繼續旋轉,當他又和始邊重合時,所成的角叫做周角。③從一個角的頂點引出的一條射線,把這個角分成兩個相等的角,這條射線叫做這個角的平分線。
平行:①同一平面內,不相交的兩條直線叫做平行線。②經過直線外一點,有且只有一條直線與這條直線平行。③如果兩條直線都與第3條直線平行,那麼這兩條直線互相平行。
垂直:①如果兩條直線相交成直角,那麼這兩條直線互相垂直。②互相垂直的兩條直線的交點叫做垂足。③平面內,過一點有且只有一條直線與已知直線垂直。
垂直平分線:垂直和平分一條線段的直線叫垂直平分線。
垂直平分線垂直平分的一定是線段,不能是射線或直線,這根據射線和直線可以無限延長有關,再看後面的,垂直平分線是一條直線,所以在畫垂直平分線的時候,確定了2點後(關於畫法,後面會講)一定要把線段穿出2點。
垂直平分線定理:
性質定理:在垂直平分線上的點到該線段兩端點的距離相等;
判定定理:到線段2端點距離相等的點在這線段的垂直平分線上
角平分線:把一個角平分的射線叫該角的角平分線。
定義中有幾個要點要注意一下的,就是角的角平分線是一條射線,不是線段也不是直線,很多時,在題目中會出現直線,這是角平分線的對稱軸才會用直線的,這也涉及到軌跡的問題,一個角個角平分線就是到角兩邊距離相等的點
性質定理:角平分線上的點到該角兩邊的距離相等
判定定理:到角的兩邊距離相等的點在該角的角平分線上
正方形:一組鄰邊相等的矩形是正方形
性質:正方形具有平行四邊形、菱形、矩形的一切性質
判定:1、對角線相等的菱形2、鄰邊相等的矩形
3、相交線與平行線
角:①如果兩個角的和是直角,那麼稱和兩個角互為餘角;如果兩個角的和是平角,那麼稱這兩個角互為補角。②同角或等角的餘角/補角相等。
③對頂角相等。④同位角相等/內錯角相等/同旁內角互補,兩直線平行,反之亦然。
4、三角形
三角形:①由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形。②三角形任意兩邊之和大於第三邊。
三角形任意兩邊之差小於第三邊。③三角形三個內角的和等於180度。④三角形分銳角三角形/直角三角形/鈍角三角形。
⑤直角三角形的兩個銳角互餘。⑥三角形中一個內角的角平分線與他的對邊相交,這個角的頂點與交點之間的線段叫做三角形的角平分線。⑦三角形中,連線一個頂點與他對邊中點的線段叫做這個三角形的中線。
⑧三角形的三條角平分線交於一點,三條中線交於一點。⑨從三角形的一個頂點向他的對邊所在的直線作垂線,頂點和垂足之間的線段叫做三角形的高。⑩三角形的三條高所在的直線交於一點。
圖形的全等:全等圖形的形狀和大小都相同。兩個能夠重合的圖形叫全等圖形。
全等三角形:①全等三角形的對應邊/角相等。
②條件:sss、aas、asa、sas、hl。
勾股定理:直角三角形兩直角邊的平方和等於斜邊的平方,反之亦然。
5、四邊形
平行四邊形的性質:①兩組對邊分別平行的四邊形叫做平行四邊形。②平行四邊形不相鄰的兩個頂點連成的線段叫他的對角線。
③平行四邊形的對邊/對角相等。④平行四邊形的對角線互相平分。
平行四邊形的判定條件:兩條對角線互相平分的四邊形、一組對邊平行且相等的四邊形、兩組對邊分別相等的四邊形/定義。
菱形:①一組鄰邊相等的平行四邊形是菱形。②領心的四條邊相等,兩條對角線互相垂直平分,每一組對角線平分一組對角。
③判定條件:定義/對角線互相垂直的平行四邊形/四條邊都相等的四邊形。
矩形與正方形:①有一個內角是直角的平行四邊形叫做矩形。②矩形的對角線相等,四個角都是直角。
③對角線相等的平行四邊形是矩形。④正方形具有平行四邊形,矩形,菱形的一切性質。⑤一組鄰邊相等的矩形是正方形。
梯形:①一組對邊平行而另一組對邊不平行的四邊形叫梯形。②兩條腰相等的梯形叫等腰梯形。
③一條腰和底垂直的梯形叫做直角梯形。④等腰梯形同一底上的兩個內角相等,對角線星等,反之亦然。
多邊形:①n邊形的內角和等於(n-2)180度。②多邊心內角的一邊與另一邊的反向延長線所組成的角叫做這個多邊形的外角,在每個頂點處取這個多邊形的一個外角,他們的和叫做這個多邊形的內角和(都等於360度)
平面圖形的密鋪:三角形,四邊形和正六邊形可以密鋪。
中心對稱圖形:①在平面內,一個圖形繞某個點旋轉180度,如果旋轉前後的圖形互相重合,那麼這個圖形叫做中心對稱圖形,這個點叫做他的對稱中心。②中心對稱圖形上的每一對對應點所連成的線段都被對稱中心平分。
b、圖形與變換:
1、圖形的軸對稱
軸對稱:如果一個圖形沿一條直線摺疊後,直線兩旁的部分能夠互相重合,那麼這個圖形叫做軸對稱圖形,這條直線叫做對稱軸。
軸對稱圖形:①角的平分線上的點到這個角的兩邊的距離相等。②線段垂直平分線上的點到這條線段兩個端點的距離相等。③等腰三角形的「三線合一」。
軸對稱的性質:對應點所連的線段被對稱軸垂直平分,對應線段/對應角相等。
2、圖形的平移和旋轉
平移:①在平面內,將一個圖形沿著某個方向移動一定的距離,這樣的圖形運動叫做平移。②經過平移,對應點所連的線段平行且相等,對應線段平行且相等,對應角相等。
旋**①在平面內,將一個圖形繞一個定點沿某個方向轉動一個角度,這樣的圖形運動叫做旋轉。②經過旋轉,圖形商店每一個點都繞旋轉中心沿相同方向轉動了相同的角度,任意一對對應點與旋轉中心的連線所成的角都是旋轉角,對應點到旋轉中心的距離相等。
3、圖形的相似
比:①a/b=c/d,那麼ad=bc,反之亦然。②a/b=c/d,那麼a土b/b=c土d/d。③a/b=c/d=。。。=m/n,那麼a+c+…+m/b+d+…n=a/b。
**分割:點c把線段ab分成兩條線段ac與bc,如果ac/ab=bc/ac,那麼稱線段ab被點c**分割,點c叫做線段ab的**分割點,ac與ab的比叫做**比(根號5-1/2)。
相似:①各角對應相等,各邊對應成比例的兩個多邊形叫做相似多邊形。②相似多邊形對應邊的比叫做相似比。
相似三角形:①三角對應相等,三邊對應成比例的兩個三角形叫做相似三角形。②條件:aaa、sss、sas。
相似多邊形的性質:①相似三角形對應高,對應角平分線,對應中線的比都等於相似比。②相似多邊形的周長比等於相似比,面積比等於相似比的平方。
圖形的放大與縮小:①如果兩個圖形不僅是相似圖形,而且每組對應點所在的直線都經過同一個點,那麼這樣的兩個圖形叫做位似圖形,這個點叫做位似中心,這時的相似比又稱為位似比。②位似圖形上任意一對對應點到位似中心的距離之比等於位似比。
c、圖形的座標
平面直角座標系:在平面內,兩條互相垂直且有公共原點的數軸組成平面直角座標系。水平的數軸叫做x軸或橫軸,鉛直的數軸叫做y軸或縱軸,x軸與y軸統稱座標軸,他們的公共原點o稱為直角座標系的原點。
他們分4個象限。xa,yb記作(a,b)。
d、證明
定義與命題:①對名稱與術語的含義加以描述,作出明確的規定,也就是給出他們的定義。②對事情進行判斷的句子叫做命題(分真命題與假命題)。
③每個命題是由條件和結論兩部分組成。④要說明一個命題是假命題,通常舉出一個離子,使之具備命題的條件,而不具有命題的結論,這種例子叫做反例。
公理:①公認的真命題叫做公理。②其他真命題的正確性都通過推理的方法證實,經過證明的真命題稱為定理。
③同位角相等,兩直線平行,反之亦然;sas、asa、sss,反之亦然;同旁內角互補,兩直線平行,反之亦然;內錯角相等,兩直線平行,反之亦然;三角形三個內角的和等於180度;三角形的一個外交等於和他不相鄰的兩個內角的和;三角心的一個外角大於任何一個和他不相鄰的內角。④由一個公理或定理直接推出的定理,叫做這個公理或定理的推論。
什麼是幾何圖形什麼叫幾何圖形點是平面圖形嗎?
2010 12 19 13 37 一 什麼是幾何圖形 點 線 面 體這些可幫助人們有效的刻畫錯綜複雜的世界,它們都稱為幾何圖形 geometric figure 幾何圖形一般分為立體圖形 solid figure 和平面圖形 plane figure 二 我們所熟悉的幾何圖形 正方形 a 邊長 c ...
幾何圖形梅花的畫法,幾何圖形梅花咋畫?
按以下幾個步驟 1 先畫個圓 2 把圓的周長五等分,並依次連線幾個等分點3 以每條玄為直徑,以玄的中心點為圓心畫圓,交圓與兩點,依次畫完即可4 擦掉多餘的線段,就可以形成幾何圖形梅花 幾何圖形梅花咋畫?按以下幾個步驟 1 先畫個圓 2 把圓的周長五等分,並依次連線幾個等分點3 以每條玄為直徑,以玄的...
什麼叫做幾何圖形,幾何圖形又分為哪幾種
幾何圖形就是生活中二維或者三維的形體,有平面幾何和立體幾何,平面裡又分為點線面,多邊形之類的,立體的就是所謂的3d圖形 有點線面組成的圖形叫幾何圖形,可分為立體圖形和平面圖形 就是由首尾順次相連的封閉圖形。一般有三角形,正方形 四邊形 多邊形 圓這些圖形 基本的幾何圖形有哪些 基本的幾何圖形有柱體 ...