大學基礎物理叉乘和點乘,大一,剛剛學大學物理,忘了那個向量點乘和叉乘的區別

2021-05-11 15:34:17 字數 1332 閱讀 6363

1樓:匿名使用者

點乘的結果是一個實數:

a·b=|a|·|b|·cos,其中a,b表示a,b的夾角(幾何上是ab所構成的平行四邊形對角線的長度)。

叉乘的結果是一個向量:

當向量a和b不平行的時候,其模的大小為 |a×b|=|a|·|b|·sin(幾何上是ab所構成的平行四邊形的面積) 方向為 a×b和a,b都垂直 且a,b,a×b成右手系;當a和b平行的時候,結果為0向量。

大一,剛剛學大學物理,忘了那個向量點乘和叉乘的區別

2樓:盛威工具

點乘的結果是一個實數:

a·b=|a|·|b|·cos,其中a,b表示a,b的夾角(幾何上是ab所構成的平行四邊形對角線的長度)。

叉乘的結果是一個向量:

當向量a和b不平行的時候,其模的大小為 |a×b|=|a|·|b|·sin(幾何上是ab所構成的平行四邊形的面積) 方向為 a×b和a,b都垂直 且a,b,a×b成右手系;當a和b平行的時候,結果為0向量。

3樓:章天和英奕

總體上說由於角動量包含有叉乘,所以一般與旋轉有關的量都用叉乘。與此類似與能量有關的都用點乘。不過沒有絕對的。

叉乘和點乘是兩種不同的運算,和加減沒什麼區別,什麼時候用一般看具體需要,就像什麼時候用乘法什麼時候用加法一樣。

大學物理向量的點乘和叉乘

4樓:匿名使用者

總體上說由於角動量包含有叉乘,所以一般與旋轉有關的量都用叉乘。與此類似與能量有關的都用點乘。不過沒有絕對的。

叉乘和點乘是兩種不同的運算,和加減沒什麼區別,什麼時候用一般看具體需要,就像什麼時候用乘法什麼時候用加法一樣。

5樓:

那就看你的結果是向量還是標量了。、

物理上的點乘和叉乘是什麼意思

6樓:匿名使用者

設兩個向量都是單位長度向量,點乘計算一個向量在另一個向量上的投影長度,其結果是一個標量;而叉乘計算兩個向量圍成的平行四邊形面積,然後乘以與前兩個向量所處平面垂直的第三個單位向量,因此結果是向量。這些計算與特定物理量相互作用的方式是一致的,例如計算電場力做功時,電場向量與電流向量要點乘。而計算洛倫茨力時,電流方向、磁場方向和電荷受力方向之間滿足叉乘關係。

7樓:匿名使用者

總體上說由於角動量包含有叉乘,所以一般與旋轉有關的量都用叉乘。與此類似與能量有關的都用點乘。不過沒有絕對的。

叉乘和點乘是兩種不同的運算,和加減沒什麼區別,什麼時候用一般看具體需要,就像什麼時候用乘法什麼時候用加法一樣。

向量的點乘叉乘運算順序,向量中叉乘和點乘怎麼轉換的?我看到書裡上一步全是叉乘,到下一步就變點乘了,這之間的轉化公式是什麼?

點乘和叉乘 沒有 運算的優先順序,就是直接從左到右依次運算。當然你的例子裡先點乘出來是標量,咋跟向量叉乘呢?這裡必須放個括號在後面。規範表示向量有的點乘 數乘 沒有叉乘。向量a x1,y1 向量b x2,y2 向量a 向量b x1x2 y1y2 首先,向量a 向量b a b sin 錯了,左邊應該是...

向量的點乘和叉乘有什麼物理意義,向量的點積與叉積有何物理意義

要看這兩個物理量,可能有物理意義,也可能沒有。如在物理學中,已知力與位移,所以點乘的結果為功,有物理意義。其實就是求向量f與向量s的點乘。在物理學中,已知力與力臂求力矩,用叉乘。誰知道物理中向量與向量間的點乘和叉乘有什麼區別?麻煩介紹詳細點,謝了 點乘描述一個向量在另一個向量方向上的投影大小,兩向量...

矩陣點乘和叉乘的區別

點乘是向量的內積 叉乘是向量的外積例如 點乘 點乘的結果是一個實數a b a b cos 叉乘 叉乘的結果是一個向量 當向量a和b不平行的時候 其模的大小為 a b a b sin 方向為a b和a,b都垂直 且a,b,a b成右手系 當a和b平行的時候,結果為0向量 點乘,某些軟體定義的,與矩陣沒...