1樓:匿名使用者
是的,二次求導 dy/dx的結果再求導
二次微分d(dy/dx)/dx為什麼結果是d^2y/dx^2?求滿意解釋。
2樓:116貝貝愛
^解題過程如下:
y''^2=x^2y'dy'/dx
=±√(x^2y')
=±x√y'dy'/√y'
=±xdx
兩邊積分:2√y'=±x^2/2+c14y'
(±x^2/2+c1)^2
=x^4/4±c1x^2+c1^2
=x^4/4+c1x^2+c1^2y'
=x^4/16+c1/2*x^2+c1^2
y''=d^2y/dx^2
如果y0是非齊次微分方程的一個特解,而y*是對應的齊次微分方程的通解,則y=y0+y*是方程的通解。
對於比較簡單的情形,可以用觀察法找特解。但對於比較複雜的情形就不太容易了。下面對於f(x)的幾種常見形式,待定係數法(pm(x)=a0+a1x+a2x2+...
+amxm為已知的多項式)。
y''=f(x)型方程特點:右端僅含有自變數x,逐次積分即可得到通解,對二階以上的微分方程也可類似求解。其中,c1,c2為任意常數。
y''=f(x,y')型方程特點:右端函式表示式中不含有未知函式y。這是關於p的一階微分方程,可求通解。由於y'也是x的未知函式,可設p(x)=y',
3樓:匿名使用者
關於d^2y/dx^2,
1. 其實是一個記號,表示y的二階導數,**是d(dy/dx)/dx:分子d(dy)記為d^2y,分母dxdx記為dx^2,後面的3階導數d^3y/dx^3是一樣的含義。
2.如果硬要用微分,是這樣的:d(dy/dx)/dx=[dxd(dy)-dyd(dx)]/dx^3
由於dy=y'dx ,那麼:d(dy)=dy'dx+y'd(dx)=y''dx^2+y'd(dx)
於是:分子=dx(y''dx^2+y'd(dx))-y'dxd(dx)=dx(y''dx^2)=y''dx^3
所以:d(dy/dx)/dx=y''
4樓:匿名使用者
d(dy/dx)/dx寫成d^2y/dx^2是一種表達方式
不能用d(u/v)=(vdu-udv)/v^2去推
5樓:匿名使用者
只需要證明:
d^2x/dx^2=0.
d^2x/dx^2=d(dx/dx)/dx=d(1)/dx=0
d^2y/dx^2是什麼意思
6樓:匿名使用者
d^2y/dx^2=y"——y對x的二次導數
7樓:匿名使用者
就是y對x連續求兩次導數的意思
8樓:匿名使用者
二階導數,就是導數再求導
9樓:匿名使用者
微分兩次
(d/dx)^2=(dy/dx)^2=d^2y/dx^2
d2ydx2是什麼意思,微分符號d2ydx2為何二階導數如此表示
d 2y dx 2 y y對x的二次導數 就是y對x連續求兩次導數的意思 二階導數,就是導數再求導 微分兩次 d dx 2 dy dx 2 d 2y dx 2 微分符號d 2y dx 2 為何二階導數如此表示 50 一階導數符號是dy dx,求導函式是y,因此這個符號中d dx就相當於求導符號.既然...
高數裡d是什麼意思,高數中的那個d是什麼意思比如物理上的dsdt怎麼解讀
高數裡d是 求導 的意思。是積分,d.是微分 高數中的那個 d 是什麼意思?比如物理上的 d s d t 怎麼解讀?1 高數中,d是differential的縮寫,微分的意思。2 ds dt是位移 的微分比時間的微分 3 高等數學是由微積分學,較深入的代數學 幾何學以及它們之間的交叉內容所形成的一門...
ox高數裡是什麼意思高數中,ox是什麼意思?
是高階無窮小量。高等數學比初等數學 高等 的數學。廣義地說,初等數學之外的數學都是高等數學,也有將中學較深入的代數 幾何以及簡單的集合論邏輯稱為中等數學,作為小學初中的初等數學與本科階段的高等數學的過渡。本科高等數學教學中可以分為a b c d四個等級 某些學校以考研的分類分為1 2 3 4 其難度...