1樓:匿名使用者
數學界正在證明1+1=2,1個素數+1個素數=1個質數
1+1為什麼等於2?
2樓:薔祀
1+1=2 是初等數學範圍內的數值計算等式。
當某個原始人第一個意識到1+1=2,進而認識到兩個數相加得到另一個確定的數時,這一刻是人類文明的偉大時刻,因為他發現了一個非常重要的性質——可加性。這個性質及其推廣正是數學的全部根基,它甚至說出數學為什麼用途廣泛的同時,告訴我們數學的侷限性。
人們知道,世界上存在三類不同的事物。一類是完全滿足可加性的量。比如質量,容器裡的氣體總質量總是等於每個氣體分子質量之和。對於這些量,1+1=2是完全成立的。
擴充套件資料:
皮亞諾公理,也稱皮亞諾公設,是數學家皮亞諾(皮阿羅)提出的關於自然數的五條公理系統。根據這五條公理可以建立起一階算術系統,也稱皮亞諾算術系統。
皮亞諾的這五條公理用非形式化的方法敘述如下:
①0是自然數;
②每一個確定的自然數 a,都有一個確定的後繼數x' ,x' 也是自然數(一個數的後繼數就是緊接在這個數後面的數,例如,1的後繼數是2,2的後繼數是3等等);
③如果b、c都是自然數a的後繼數,那麼b = c;
④0不是任何自然數的後繼數;
⑤設s是自然數集的一個子集,且(1)0屬於s;(2)如果n屬於s,那麼n'也屬於s。
(這條公理也叫歸納公理,保證了數學歸納法的正確性)
更正式的定義如下: 一個戴德金-皮亞諾結構是這樣的一個三元組(x, x, f),其中x是一個集合,x為x中一個元素,f是x到自身的對映,且符合以下條件:
x不在f的值域內;
f為一個單射;
若x∈a 且 " a∈a 蘊涵 f(a)∈a",則a=x。
3樓:匿名使用者
關於為什麼1+1=2,
因為2被定義為1+1,
即2=1+1,
根據等式左右互換原則,
仍然成立,
即1+1=2,
證明完畢。
4樓:維絡小熊
個人認為,1+1=2就是最早給出這個數學定義的原始群體或個人定義的。假如你會穿越,穿越到人類知道1+1=2之前,把2和3互換,你定義了1+1=3,1+3=2,後人也會延續這樣的數學事件下來。就像居里夫人發現了鐳元素,她當時如果不叫它鐳,叫「前軲轆不轉後軲轆轉」,那到現在我們也會把居里夫人發現的這個新元素叫「前軲轆不轉後軲轆轉」。
我認為這不是一個數學問題。是個哲學問題。
1+1為什麼等於2
5樓:鄢懷寒暴桐
因為從1開始往下數是1、2、3、4……古人定下來的順序!1+1=2、2+1=3……沒有為什麼!
如果古人定下的順序是1、3、2、4……那麼1+1就是等於3了!
6樓:闢逸麗釋熙
因為他它已經被所有人認可了,
如果你早出生幾百年,你就1+1=n
被人們接受了
那傳到現在可能1+1=n
就等於n了
希望你採納,,謝謝!!
7樓:閃青旋鄂策
按照數字排列,2在1後面,意味著2比1大,那麼,1+1肯定是整數,因為整數加整數必定是整數,那麼1+1這個算式裡,兩個加數都是一樣的,那麼意味著這個算式是從1往後加了一位,那麼1的後一位是2,所以1+1等於2,不知道我的觀點對不對,請大家多多指教!
8樓:國迎彤澄春
【皮亞諾公理】
皮亞諾(peano,1858—1932)系義大利數學家,他提出五條自然數的性質,通常把這五條性質叫做自然數的皮亞諾公理。
(1)「1」是自然數;
(2)每一個確定的自然數a,都有一個確定的後繼數a′,a′也是自然數(一個數的後繼數就是緊接在這個數後面的數,例如,1的後繼數是2,2的後繼數是3等等);
(3)如果b、c都是自然數a的後繼數,那麼b=c;
(4)1不是任何自然數的後繼數;
(5)任意關於自然數的命題,如果證明了它對自然數1是對的,又假定它對自然數n為真時,可以證明它對n′也真,那麼,命題對所有自然數都真。
證明:1+1的後繼數是1的後繼數的後繼數,既是32的後繼數是3
根據皮亞諾公理(4)
可得:1+1=2
9樓:局迎荷蕭菊
1+1等於幾是相對存在
我們並一定那麼的認為它是等於幾
等於幾要看我們是在什麼地方用到它
當我們做數學題的時候
我們可以把它等於2但是當我們在其他的地方的時候可能那個時候我們就不應該那麼的認為了
10樓:勵新霽萊湛
十進位制裡1+1=2是人為規定的呀。這並不是真理。一個初始值而已。
在二進位制裡就不是這樣了,二進位制1+1=10,也是人為規定。
呵呵,都是祖先發明出來的計數方法而已,沒那麼多為什麼。
11樓:包豔戢珧
一根手指+一根手指=兩根手指
一個個體+另一個個體=倆個個體
一堆沙+一堆沙=一堆沙
一堆沙不是一個個體
所以1+1=2
(0>1)+(0>1)≠2
完畢求滿意!
12樓:庾倚雲仲璠
現在已經不等於二了,你能確保一隻公雞和一隻母雞隻下一個蛋嗎?所以應該大於等於二
13樓:柳惠心斛誼
這是一個習慣,不是一個定理!為了生活簡便古人沿用下來的方式!就像文字一樣,本來什麼都不是,就是為了方便。
其實從開始沒有什麼1+1=2,後來人們定義的。所以你不用糾結,就像你的名字父母起的,難道你去問為什麼叫這個名字嗎?
14樓:佘琇逯儂
這個問題很高深,每個不小於
6的偶數都是兩個奇素數之和,即「1+1=2」.
15樓:巧千山羅鴻
1+1=2即是相同空間下的相同的存在性,即是靜態下的物質的累加,當然還要有單位的驗證。但是如果你一定要追其深究,我想這個問題永遠也不會有讓人滿意的答案(當然不排除你滿意而已),即使你是歐幾里得、畢達哥拉斯、笛卡兒……因為要辯證起來,它可以有成千上萬的理由,從哲學、物理、化學、甚至藝術……
「1+1等於多少是小學老師教我的,我到了中學才想明白為什麼是2。我想看看大家之中有多少人還是小學生。有多少人超越了我,一箇中學生。」
來回答你問題的人並不是都想證明誰誰誰超越了你這個中學生,而確實是因為這「言語上的冒犯」,我想應該沒有人多少人會有等同於你的「你滿意的答案」吧。你的父母長輩們給出了你滿意的答案嗎?那麼你認為他們是無法超越你的人嗎?
建議你用1+1=2來辨證一下你的這個觀點,你那麼聰明,應該可以給出你自己滿意的答案吧~
1+1=2是為什麼
16樓:中素枝壬鵑
根據一般的常識來說,
1+1=2
等於2以外的數就另有說法了.
如:一群雞加一群雞還是就等於一大群雞=1
我爸爸+我媽媽=我爸爸+我媽媽+我.=3
我也認為1+1不應該等於2
17樓:琦德慄戌
根據一般常識來說1+1=2,等於二以外的數就另有說法了,例如一大群雞加一大群雞還是等於一大群雞,我認為1+1不應該等於2
18樓:連嘉悅牢義
證明1+1=2要用到皮亞諾公理
【皮亞諾公理】
皮亞諾(peano,1858—1932)系義大利數學家,他提出五條自然數的性質,通常把這五條性質叫做自然數的皮亞諾公理。
(1)「1」是自然數;
(2)每一個確定的自然數a,都有一個確定的後繼數a′,a′也是自然數(一個數的後繼數就是緊接在這個數後面的數,例如,1的後繼數是2,2的後繼數是3等等);
(3)如果b、c都是自然數a的後繼數,那麼b=c;
(4)1不是任何自然數的後繼數;
(5)任意關於自然數的命題,如果證明了它對自然數1是對的,又假定它對自然數n為真時,可以證明它對n′也真,那麼,命題對所有自然數都真。
證明:1+1的後繼數是1的後繼數的後繼數,既是32的後繼數是3
根據皮亞諾公理(4)
可得:1+1=2
19樓:匿名使用者
怎麼證明1加1等於2陳景潤證明的叫歌德巴-赫猜想。並不是證明所謂的1+1為什麼等於2。當年歌德巴-赫在給大數學家尤拉的一封信中說,他認為任何一個大於6的偶數都可以寫成兩個質數的和,但他既無法否定這個命題,也無法證明它是正確的。
尤拉也無法證明。這「兩個質數的和」簡寫起來就是「1+1」。幾百年過去了,一直沒有人能夠證明歌德巴-赫猜想,包括陳景潤,他只是把證明向前推進了一大步,但還是沒有完全證明
21+1為什麼等於2?這個問題看似簡單卻又奇妙無比。 在現代的精密科學中,特別在數學和數理邏輯中,廣泛地運用著公理法。
什麼叫公理法呢?從某一科學的許多原理中,分出一部分最基本的概念和命題,對這些基本概念不下定義,而這一學科的所有其它概念都必須直接或間接由它們下定義;對這些基本命題(也叫公理)也不給予論證,而這一學科中的所有其它命題卻必須直接或間接由它們中推出。這樣構成的理論體系就叫公理體系,構成這種公理體系的方法就叫公理法。
1+1=2就是數學當中的公理,在數學中是不需要證明的。又因為1+1=2是一切數學定理的基礎,.........
3由此我們可以得出如下規律:
a+a=b、b+b=a、a+b=c;n+c=n( 文章閱讀網:www.sanwen.net )
a*a=a、b*b=a、a*b=b;n*c=c(注:n為任意自然數)
這八個等式客觀準確地反映了自然數中各類數的相互關係。
下面我們就用abc屬性分類對「猜想」做出證明,(我們只證明偶數中的偶a數,另兩類數的證明類同)
設有偶a數p 求證:p一定可以等於:一個質數+另一個質數
證明:首先作數軸由原點0到p。同時我們將數軸作90度旋轉,由橫向轉為縱向,即改為原點在下、p在上。
我們知道任意偶數都可以從它的中點二分之一p處折回原點。把0_p/2稱為左列,把p/2_p(0)稱為右列。這時,數軸的左右兩列對稱的每對數字之和都等於p:
0+p=p;1+(p-1)=p;2+(p-2)=p;、、、、、、p/2+p/2=p。這樣的左右對稱的數列我們稱之為數p的「折返」數列。
對於偶a數,左數列中的每一個b數都對應著右列的一個b數。(a=b+b)
20樓:偶孤丹玄代
在算術學中1+1=2.
在美術學中1+1=11.
在中文學中1+1=田
在腦筋急轉彎學中1+1的結果按情況決定。
在其他學科中1+1的結果等您**......
21樓:斛秋芹公琴
1+1=2即是相同空間下的相同的
存在性,即是靜態下的物質的累加,當然還要有單位的驗證。但是如果你一定要追其深究,我想這個問題永遠也不會有讓人滿意的答案(當然不排除你滿意而已),即使你是歐幾里得、畢達哥拉斯、笛卡兒……因為要辯證起來,它可以有成千上萬的理由,從哲學、物理、化學、甚至藝術……
「1+1等於多少是小學老師教我的,我到了中學才想明白為什麼是2。我想看看大家之中有多少人還是小學生。有多少人超越了我,一箇中學生。」
來回答你問題的人並不是都想證明誰誰誰超越了你這個中學生,而確實是因為這「言語上的冒犯」,我想應該沒有人多少人會有等同於你的「你滿意的答案」吧。你的父母長輩們給出了你滿意的答案嗎?那麼你認為他們是無法超越你的人嗎?
建議你用1+1=2來辨證一下你的這個觀點,你那麼聰明,應該可以給出你自己滿意的答案吧~
1 1為什麼等於,1 1為什麼等於
這是一個定義問題了。1 1 田 11 2 十進位制的基本計演算法則 1 1為什麼等於2?1 1 2 是初等數學範圍內的數值計算等式。當某個原始人第一個意識到1 1 2,進而認識到兩個數相加得到另一個確定的數時,這一刻是人類文明的偉大時刻,因為他發現了一個非常重要的性質 可加性。這個性質及其推廣正是數...
11等於多少,11到底等於幾?
答 這幾天全是這道題。問的人太多了,我答了快7 8次了。搜查即可!到目前為止,根據現有知識,我認為應是三解 1 我們初學算術時,早就知道1 1 2了。2 當我們學到了二進位制的計數法以後,就知道在二進位制裡1 1 10而不是1 1 2了。因為在二進位制裡,根本沒有2這個數字。3 1 1 1。是邏輯代...
1 1等於幾,1 1到底等於幾?
1 1 2 1男 1女 1家 一對夫妻,一個家庭 1 1 10是電腦二進位制 在當代認知範疇內,1 1 2 2,11,n,什麼都行,只要解釋的通 1 1到底等於幾?1 1 2 1 1 2 是初等數學範圍內的數值計算等式。人們知道,世界上存在三類不同的事物。一類是完全滿足可加性的量。比如質量,容器裡的...