線性規劃應用題

2021-06-26 20:07:27 字數 1723 閱讀 3277

1樓:百度文庫精選

內容來自使用者:麵包樹下

1.某企業生產甲、乙兩種產品,已知生產每噸甲產品要用a原料3噸、b原料2噸;生產每噸乙產品要用a原料1噸、b原料3噸。銷售每噸甲產品可獲得利潤5萬元,每噸乙產品可獲得利潤3萬元,該企業在一個生產週期內消耗a原料不超過13噸,b原料不超過18噸,求該企業可獲得最大利潤。

解析:設甲、乙種兩種產品各需生產、噸,可使利潤最大,故本題即

已知約束條件,求目標函式的最大值,可求出最優解為,故。

2.某公司租賃甲、乙兩種裝置生產a,b兩類產品,甲種裝置每天能生產a類產品5件和b類產品10件,乙種裝置每天能生產a類產品6件和b類產品20件.已知裝置甲每天的租賃費為200元,裝置乙每天的租賃費為300元,現該公司至少要生產a類產品50件,b類產品140件,求所需租賃費的最少值.

【解析】:設甲種裝置需要生產天,乙種裝置需要生產天,該公司所需租賃費為元,則,甲、乙兩種裝置生產a,b兩類產品的情況為下表所示:

產品 |裝置 |a類產品 |(件)(≥50) |b類產品 |(件)(≥140) |租賃費 |(元) |

甲裝置 |5 |10 |200 |

乙裝置 |6 |20 |300 |

則滿足的關係為即:,

作出不等式表示的平面區域,當對應的直線過兩直線的交點(4,5)時,目標函式取得最低為2300元那麼分析:弄清題意,明確與運輸成本有關的變數的各型車的輛數,找出它們的約束條件,列出目標函式,用**法求其整數最優解

2樓:匿名使用者

這個是人教版必修5裡面的題。

題目是這樣的:

甲,乙兩個糧庫要向a,b兩鎮運送大米,已知甲庫可調出100t大米,乙庫可以調出80t大米.a鎮需要70t大米,b鎮需要110t大米.兩庫到兩鎮的路程和運費如下表:

路程/km 運費/(元·t^-1·km^-1)甲庫 乙庫 甲庫 乙庫

a鎮 20 15 12 12

b鎮 25 20 10 8

(1)這兩個糧庫各運a,b兩鎮多少t大米,才能使總運費最省?此時運費是多少?

(2)最不適合的調運方案是什麼?它使國家造成的損失是多少?

這個題目我有點理不清,懇請寫出設法和具體的式子(注意是用線性規劃的方法)至於後面的畫圖和計算這邊解答不來所以可以不用

這樣的問題不難解決,但是線性規劃問題就是打字太多了,麻煩。

25分懸賞加20最佳=45分,不值,還不如胡亂回到30個問題舒服。

3樓:匿名使用者

樓三所說的是對的,線性是**的方法最快,一般最值的是在那些多邊形的頂點上,不過寫倒不能這樣寫,因為有時是有特殊的,因此把z=15x1+20x2(其實如果只有二個未知數就設x與y,比較方便畫圖,這裡把x1換成x,x2換成y)變形為y=15/20x+z/20,這時只須用y=15/20x上下移動,在條件所圍成的區域內得到與y軸相交的點是最值一般是所求值,代入那個點(或線)時就能得到z,上面是我所解釋的,寫的時候不用那麼多,能畫圖與寫出那些式子,加一些語言說下,就可以了。

其實能把書中的例題能看懂,這類題目應該都能做。方法都是照著套的。

4樓:匿名使用者

設生產x張椅子,y張桌子

max 15x+20y

s.t. 4x+8y<=8000

2x+y<=1300

利用管理運籌學軟體winqsb求得即可(平時考試只要寫出上面的規劃模型就可以了,計算就留給計算機吧)

線性規劃習題,線性規劃應用題

同學,這是最基本的線性規劃問題,可以用基本的 單純形法 求解,網上應該有相應的教程的,我的 裡列出了我親自筆算的詳細 最終的x1 2,x2 4,x3 0 目標函式最大值為22 樓上說的什麼啊都是。樓主啊 您這個好像不是線性規劃的!我教你個最簡單的方法 挺投機取巧的。你把所有不等式 換成等式。也就是 ...

線性規劃的簡單題

其實我高中裡都不怎麼用線性規劃的 教你個狠招 你看數字不亂的不妨用我的方法 保你屢試不爽 我高考數學133 例如題一 因為它求 x 3y 我們投其所好湊個x 3y出來 湊的方法很噁心 2x 3y x y y 設a b nz 因為x和y的係數是1 3 所以 2a b 3a b 1 36a 3b 3a ...

線性規劃最優解是整數的問題,線性規劃最優解是整數的問題

對於這個問題,想要一個程式是難以實現的,不過你的問題可以分兩步來解,專首先就是解x 1 234和x 2 651,這個你肯定自己屬程式設計搞定 其次,分別考慮為0的情況,x 1 0,x 2 651 x 1 234,x 2 0以及x 1 0,x 2 0,這樣你的問題就解決了。說白了多執行多修改幾次程式吧...