如圖所示,重為G的圓球被長細線AC懸掛在牆上,不考慮牆的

2021-04-24 04:50:26 字數 4737 閱讀 5210

1樓:手機使用者

對重球受力分析如圖:

設繩子與豎直牆面間的夾角θ,

重球專豎直方向受力平屬衡:tcosθ=g ①重球水平方向受力平衡:tsinθ=f ②

如果把繩的長度增加一些,則夾角θ減小,cosθ增大,由①得繩子拉力t減小;

sinθ減小,t也減小,由②得繩子的彈力f減小;

再結合牛頓第三定律,球對繩的拉力f1和球對牆的壓力f2均減小;

故選:ac.

如圖所示,用繩索將重球掛在牆上,不考慮牆的摩擦。如果把繩的長度增大一些,則球對繩的拉力 f 1 和球對

2樓:乃牛自豪

c設繩子與豎直牆面間的夾角θ,

重球豎直方向受力平衡:tcosθ="g" ①重球水平方向受力平衡:tsinθ="f" ②若果把繩的長度增加一些,則夾角θ減小,cosθ增大,由①得繩子拉力t減小,

sinθ減小,t也減小,由②得繩子牆的彈力f減小,故選:c

點評:注意此題繩子長度在增長過程中夾角減小,但是仍然處於受力平衡狀態.

如圖所示,一個球用細繩懸掛在牆上.圖中的球與牆之間無摩擦,設繩對球的拉力為ft,牆對球的彈力為fn.如

3樓:☆異鳴

設繩子與豎直牆面的夾角為θ,由平衡條件得:

ft=mg

cosθ

fn=mgtanθ

把繩子伸長時,θ角減小,則cosθ增大,tanθ減小,則得到ft、fn都減小.

故選:b.

如圖所示,一個重為g的圓球被長細線ac懸掛在牆上,不考慮牆的摩擦,如果把繩的長度增加一些,則球對繩的

4樓:銀墳稈

ac都減小。答案選d

點評:受力分析有以下幾種方法:力的合成與分解、正交分解、向量三角形、相似三角形、解析法,本題屬於動態平衡問題,解決此類問題可以採用向量三角形法或解析法(又稱數學法)

如圖所示,一個半徑為r,重為g的圓球被長為r的細線ac懸掛在牆上,求球對細線的拉力t和球對牆的壓力n

5樓:仙劍小蠻

對球復受力分析,受重力、

制細線的拉力、牆壁的支bai持力,如du圖所示:zhi根據共點力平衡條件,dao有:

n=gtan30°=33

gt=g

cos30°=23

3g根據牛頓第三定律,球對細線的拉力為233

g,和球對牆的壓力33

g答:球對細線的拉力為233

g,球對牆的壓力為33g.

如圖所示,用繩索將重球掛在牆上,不考慮牆的摩擦.如果把繩的長度增加一些,則球對繩的拉力f1和球對牆的

6樓:界首一中

以小球為研究物件,分析受力如圖.設繩子與牆的夾角為θ,由平衡條件得f1′=mg

cosθ

,f2′=mgtanθ

根據牛頓第三定律得

球對繩的拉力f1=f1′=mg

cosθ

,球對牆的壓力f2=f2′=mgtanθ

把繩的長度增大減小,θ減小,cosθ增大,tanθ減小,則得到f1和f2都減小.

故選:c

7樓:爾玉蘭葛辛

隔離球作受力分析就可以了

球只受到

繩子的拉力t,牆對球的支援力f,重力g

三個力由於f垂直g

以球心為座標原點,支援力f為x軸,重力g為y軸作平面直角座標系(其實就是球的自然座標)

對拉力t作正交分解,設∠cab

為∠ф由受力平衡得

tcosф=g

(1),

tsinф=f

(2)由於繩子邊長時,ф角變小

由(1)式得:cosф變大,而重力g不變,則繩子拉力t變小由(2)式得:sinф變小,繩子拉力t變小,則牆對球的支援力f變小

根據牛頓第三定律,球對牆的壓力f2也變小

(f與f2大小相同,方向相反)

則答案選c

8樓:逮蘭祖嫣

選b,因為球的重力不變,增加繩子的長度,力臂加長,球對繩子的拉力就變小,球對牆的壓力就變大,簡單說就是:球對繩子的拉力+球對牆的壓力=球的重力

9樓:戲蕾孟雲

第一章運動的描述

一、知識要點:

1.物體相對於其他物體的

變化,也就是物體的

變化,是自然界中最

、最的運動形態,稱為機械運動。

2.我們在研究物體的

時,在某些特定情況下,可以不考慮物體的

和,把它簡化成一個

,稱為質點,質點是一個

的物理模型。

3.在描述一個物體的運動時,選來作為

物體,叫做參考系。對同一個運動,選擇不同的參考系時,觀察到的結果

。實際選取參考系的時候,需要考慮到使運動的描述儘可能簡單,研究地面上物體的運動,通常取

或不動的其他物體做參考系比較方便。

4.時刻和時間間隔既有聯絡又有區別,在表示時間的數軸上,時刻用

表示,用線段表示,時刻與物體的

相對應,表示某一瞬間;時間間隔與物體的

相對應,表示某一過程(即兩個時刻的間隔)。

5.路程是物體運動軌跡的

;位移是用來表示物體(質點)的

的物理量。位移只與物體的

有關,而與質點在運動過程中所經歷的

無關。物體的位移可以這樣表示:從

到作一條有向線段,有向線段的長度表示位移的

,有向線段的方向表示位移的

。6.既有

又有的物理量叫做向量,只有大小、沒有方向的物理量叫做

。向量相加與標量相加遵守不同的法則,兩個標量相加遵從

的法則,而向量相加的法則與此不同。

7.物體沿直線運動,並以這條直線為x座標軸,這樣,物體的位置就可以用

表示,物體的位移可以通過座標的

δx=x2-x1來表示,δx的大小表示位移的

,δx的正負表示位移的

。8.速度是表示質點運動

和的物理量。它是質點的位移與發生這段位移所用時間的

。v=。向量性:速度的大小用公式計算,速度的方向與位移方向相同即是物體的

。9.在變速直線運動中,運動質點的位移和所用時間的比值,叫做這段時間內的

。平均速度只能

地描述運動的快慢。在變速直線運動中,平均速度的大小跟選定的時間或者位移有關,不同

或不同內的平均速度一般不同,必須指明求出的平均速度是對哪段

或哪段的平均速度。

10.運動質點在某一

或某一的速度叫做瞬時速度。直線運動中,瞬時速度的方向與質點某一位置時的

相同。瞬時速度與時刻或位置對應,平均速度跟

或對應。當位移足夠小或足夠短時,認為平均速度就等於

。在勻速直線運動中,

和瞬時速度相等。速度的

叫做速率,只表示物體運動的

,不表示物體運動的

,它是量。

11.電磁打點計時器是一種記錄物體在一定

內發生的儀器,它使用

電源,由學生電源供電,工作電壓在

以下。電源頻率在50hz時,它每隔

s打一個點。電火花計時器的原理與電磁打點計時器相同,這種計時器工作時,紙帶受到的阻力比較

,實驗的誤差也就比較

。12.加速度是描述速度

的物理量,它等於速度的改變跟

的比值。公式a=

。單位是

,符號是

。13.加速度在數值上等於

;加速度是

,既有,又有

,大小等於速度變化率,方向與

相同。即加速度為正值時,與初速度方向

,為負值時,與初速度方向

。二、課堂練習:

1、兩輛汽車並排在平直的公路上,甲車內

如下左圖所示,用細繩將重為g=4n的光滑球掛在牆上。繩與牆的夾角為o=37度,

10樓:莫踏笙歌

設球對繩的拉力是f,對牆的拉力是t

f=g/cos37=4/0.8=5n

t=fsin37=5×0.6=3n

一個半徑為r,重為g的圓球,被長度為l的細繩掛在豎直光滑牆上,則繩子的拉力和牆壁對球的彈力各是多少?

11樓:匿名使用者

繩子與牆的夾角為θ:

sinθ=r / (r+l)

cosθ=【根號(2rl+l^2)】/ (r+l)設牆在右面,木球收到三個力專:

重力g,方向向屬下;

牆的彈力n,水平向左;

繩的拉力f,沿繩子方向向右上方,與豎直方向夾角θ。

三力平衡,用正交分解法:

水平方向受力平衡:n=fsinθ

豎直方向受力平衡:g=fcosθ

解得:繩子拉力:f=g / cosθ =g / =g(r+l) / 【根號(2rl+l^2)】

牆的彈力:n=fsinθ=g(r+l) / 【根號(2rl+l^2)】*r / (r+l) =gr / 【根號(2rl+l^2)】

如圖所示,將一個球掛在牆上p點處,若把懸繩pq變長一些,則足球對懸繩的拉力t和對牆面的壓力n的變化情況

12樓:血刺小巷湄

a當pq變長,則f與g的夾角變小zhi,則f與fn都在變小,及dao答案為a

點評:本題考查了利用向量三角形判斷力的變化趨勢,通常向量三角形中要保持一個力大小方向不變,第二個力方向不變,從而判斷第三個力的變化

如圖所示,重為G的小鐵塊在水平方向力F的作用下,沿條形磁鐵的

鐵塊在左端時,受到n極的引力較大,鐵塊對磁鐵的壓力較大 越靠近中間,磁性減弱,磁鐵對鐵塊的作用減小,鐵塊對磁鐵的壓力減小 靠近s極,磁性增強,引力增大,鐵塊對磁鐵的壓力較大 ac 因為勻速所以拉力等於摩擦力,摩擦力的大小與壓力大小和接觸面的粗糙程度有關有關,現在接觸面的粗糙程度相同 壓力不同,摩擦力...

如圖所示,物體A放在足夠長的木板B上,木板B靜止於水平面。t 0時,電動

1 易判斷ab之間產生相 抄對滑動 所以aa f1 ma 1mag ma 0.5m s 2 ab f f1 f2 mb 解得 拉力f 7nt 1s時vb 1m s,p fv 7w 3 當改變功率時,va 0.5m s vb 1m s 仍然產生相對滑動!此時拉力f f1 f2所以b物體勻速,a物體仍以...

如圖所示,質量M 8kg的長木板放在光滑水平面上,在長木板的

1 小物塊的加速度為 a2 g 2m s2,水平向右長木板的加速度為 a1 f?mg m 8?0.2 2 10 8m s 0.5 m s2 方向水平向右 令剛相對靜止時他們的共同速度為v,以木板運動的方向為正方向對小物塊有 v v2 a2t 對木板有 v v1 a1t 聯立解得 t 8s v 14m...