下列各題中哪些數列收斂?哪些數列發散?對收斂數列通過觀察x

2021-04-20 15:01:38 字數 5247 閱讀 2384

1樓:匿名使用者

通俗的講,數bai列的極限就是該數du列最終趨向的數zhi。dao比如第一小題,回當n趨向於無窮時,可以答把2^n看做n的函式,由該函式性質知n=∞時,2^n=∞,它的倒數就是0,因此xn的極限是0;存在極限即為收斂數列。

再比如第八小題,由於n為偶數時,

;n為奇數時,xn=0,當n=∞時,極限為0。2和0不等,不存在是所有數趨向的那個數,因此不存在極限,數列發散。

其它小題均可仿照分析。

高數中的數列收斂充要條件是什麼?關於發散與收斂的問題。急求,謝謝

2樓:南瓜蘋果

1)數列收斂的基本定義

設為一已知數列,a是一個常數。如果對於任意給定的正數ε,總存在一個正整數 n=n(ε),使得當 n>n 時,有 |xn -a| < ε ,則稱數列當n趨於無窮時以a為極限,或稱數列收斂於a。

2)夾擠定理

如果有三個數列 。且當n足夠大以後,滿足條件 pn≤xn≤qn。如果 當n趨於無窮時,和都收斂於a,那麼數列也收斂於a。

3) 單調有界原理

任何單調(單調遞增或遞減)且有界的數列都收斂。

收斂數列的性質:

有界性定義:設有數列xn , 若存在m>0,使得一切自然數n,恆有|xn|定理1:如果數列收斂,那麼該數列必定有界。

推論:無界數列必定發散;數列有界,不一定收斂;數列發散不一定無界。

數列有界是數列收斂的必要條件,但不是充分條件

保號性如果數列收斂於a,且a>0(或a<0),那麼存在正整數n,當n>n時,都有xn>0(或xn<0)。

相互關係

收斂數列與其子數列間的關係

子數列也是收斂數列且極限為a恆有|xn|若已知一個子數列發散,或有兩個子數列收斂於不同的極限值,可斷定原數列是發散的。

3樓:匿名使用者

理論上講,充分條件應該很多很多。但歸根結底,主要的充分條件應該有以下3條:

1)數列收斂的基本定義

設為一已知數列,a是一個常數。如果對於任意給定的正數ε,總存在一個正整數 n=n(ε),使得當 n>n 時,有 |xn -a| < ε ,則稱數列當n趨於無窮時以a為極限,或稱數列收斂於a。

2)夾擠定理

如果有三個數列 。且當n足夠大以後,滿足條件 pn≤xn≤qn。如果 當n趨於無窮時,和都收斂於a,那麼數列也收斂於a。

3) 單調有界原理

任何單調(單調遞增或遞減)且有界的數列都收斂。

***************

的確,從邏輯上講,充要條件也是充分條件。原來對樓主的題目意圖理解有誤,以為是專門指充分而不必要的條件。現做補充

4)柯西收斂準則

設有一數列,該數列收斂的充分必要條件是:對於任意給定的正數ε,存在著這樣的正整數n,使得當 m>n>n 時就有 |xn-xm|<ε

4樓:愛迪奧特曼_開

這個數列是柯西列。

或:這個數列的任一子列都收斂到同一個數。

怎麼判斷函式和數列是收斂或發散的

5樓:demon陌

1、設數列,如果存在常數a,對於任意給定的正數q(無論多小),總存在正整數n,使得n>n時,恆有|xn-a|2、求數列的極限,如果數列項數n趨於無窮時,數列的極限能一直趨近於實數a,那麼這個數列就是收斂的;如果找不到實數a,這個數列就是發散的。看n趨向無窮大時,xn是否趨向一個常數,可是有時xn比較複雜,並不好觀察。這種是最常用的判別法是單調有界既收斂。

3、加減的時候,把高階的無窮小直接捨去如 1 + 1/n,用1來代替乘除的時候,用比較簡單的等價無窮小來代替原來複雜的無窮小來如 1/n * sin(1/n) 用1/n^2 來代替

4、收斂數列的極限是唯一的,且該數列一定有界,還有保號性,與子數列的關係一致。不符合以上任何一個條件的數列是發散數列。另外還有達朗貝爾收斂準則,柯西收斂準則,根式判斂法等判斷收斂性。

擴充套件資料:

收斂級數對映到它的和的函式是線性的,從而根據哈恩-巴拿赫定理可以推出,這個函式能擴張成可和任意部分和有界的級數的可和法,這個事實一般並不怎麼有用,因為這樣的擴張許多都是互不相容的,並且也由於這種運算元的存在性證明訴諸於選擇公理或它的等價形式,例如佐恩引理,所以它們還都是非構造的。

發散級數這一分支,作為分析學的領域,本質上關心的是明確而且自然的技巧,例如阿貝爾可和法、切薩羅可和法、波萊爾可和法以及相關物件。維納陶伯型定理的出現標誌著這一分支步入了新的階段,它引出了傅立葉分析中巴拿赫代數與可和法間出乎意料的聯絡。

發散級數的求和作為數值技巧也與插值法和序列變換相關,這類技巧的例子有:帕德近似、levin類序列變換以及與量子力學中高階微擾論的重整化技巧相關的依序對映。

收斂數列

函式收斂

定義方式與數列收斂類似。柯西收斂準則:關於函式f(x)在點x0處的收斂定義。

對於任意實數b>0,存在c>0,對任意x1,x2滿足0<|x1-x0|收斂的定義方式很好的體現了數學分析的精神實質。

如果給定一個定義在區間i上的函式列,u1(x), u2(x) ,u3(x)......至un(x)....... 則由這函式列構成的表示式u1(x)+u2(x)+u3(x)+......

+un(x)+......⑴稱為定義在區間i上的(函式項)無窮級數,簡稱(函式項)級數

對於每一個確定的值x0∈i,函式項級數 ⑴ 成為常數項級數u1(x0)+u2(x0)+u3(x0)+......+un(x0)+.... (2) 這個級數可能收斂也可能發散。

如果級數(2)發散,就稱點x0是函式項級數(1)的發散點。

函式項級數(1)的收斂點的全體稱為他的收斂域 ,發散點的全體稱為他的發散域 對應於收斂域內任意一個數x,函式項級數稱為一收斂的常數項 級數 ,因而有一確定的和s。

這樣,在收斂域上 ,函式項級數的和是x的函式s(x),通常稱s(x)為函式項級數的和函式,這函式的定義域就是級數的收斂域,並寫成s(x)=u1(x)+u2(x)+u3(x)+......+un(x)+......把函式項級數 ⑴ 的前n項部分和 記作sn(x),則在收斂域上有lim n→∞sn(x)=s(x)

記rn(x)=s(x)-sn(x),rn(x)叫作函式級數項的餘項 (當然,只有x在收斂域上rn(x)才有意義,並有lim n→∞rn (x)=0

6樓:wm未末

收斂函式:若函式在定義域的每一點都收斂,則通常稱函式是收斂的。函式在某點收斂,是指當自變數趨向這一點時,其函式值的極限就等於函式在該點的值。

有界函式指的是對於定義域中的任意一個值,相應的函式值都在一個區間內變化,也就是函式值的絕對值總小於某一個固定值,那函式就是有界的。

收斂函式一定有界,但是有界函式不一定收斂,如f(x)在x=0處f(0)=2,在其他x處f(x)=1,那麼f(x)在x=0處就不是收斂的,那麼f(x)就不是收斂函式,但是f(x)是有界的,因為1≤f(x)≤2。

判斷數列是否收斂或者發散:

1、設數列,如果存在常數a,對於任意給定的正數q(無論多小),總存在正整數n,使得n>n時,恆有|xn-a|2、求數列的極限,如果數列項數n趨於無窮時,數列的極限能一直趨近於實數a,那麼這個數列就是收斂的;如果找不到實數a,這個數列就是發散的。看n趨向無窮大時,xn是否趨向一個常數,可是有時xn比較複雜,並不好觀察。這種是最常用的判別法是單調有界既收斂。

3、加減的時候,把高階的無窮小直接捨去如 1 + 1/n,用1來代替乘除的時候,用比較簡單的等價無窮小來代替原來複雜的無窮小來如 1/n * sin(1/n) 用1/n^2 來代替

4、收斂數列的極限是唯一的,且該數列一定有界,還有保號性,與子數列的關係一致。不符合以上任何一個條件的數列是發散數列。另外還有達朗貝爾收斂準則,柯西收斂準則,根式判斂法等判斷收斂性。

拓展資料:

函式極限是高等數學最基本的概念之一,導數等概念都是在函式極限的定義上完成的。

函式極限可以分成x→∞,x→+∞,x→-∞,x→xo,,而運用ε-δ定義更多的見諸於已知極限值的函式極限證明題中。掌握這類證明對初學者深刻理解運用極限定義大有裨益。

以x→xo 的極限為例,f(x) 在點xo 以a為極限的定義是: 對於任意給定的正數ε(無論它多麼小),總存在正數δ ,使得當x滿足不等式0<|x-x。|<δ 時,對應的函式值f(x)都滿足不等式:

|f(x)-a|<ε ,那麼常數a就叫做函式f(x)當 x→x。時的極限。

問題的關鍵在於找到符合定義要求的 ,在這一過程中會用到一些不等式技巧,例如放縮法等。2023年的研究生考試試題中,更是直接考察了考生對定義的掌握情況。

7樓:關鍵他是我孫子

判斷函式是否收斂或者發散

收斂函式:若函式在定義域的每一點都收斂,則通常稱函式是收斂的。函式在某點收斂,是指當自變數趨向這一點時,其函式值的極限就等於函式在該點的值。

有界函式指的是對於定義域中的任意一個值,相應的函式值都在一個區間內變化,也就是函式值的絕對值總小於某一個固定值,那函式就是有界的。

收斂函式一定有界,但是有界函式不一定收斂,如f(x)在x=0處f(0)=2,在其他x處f(x)=1,那麼f(x)在x=0處就不是收斂的,那麼f(x)就不是收斂函式,但是f(x)是有界的,因為1≤f(x)≤2。

判斷數列是否收斂或者發散

1、設數列,如果存在常數a,對於任意給定的正數q(無論多小),總存在正整數n,使得n>n時,恆有|xn-a|2、求數列的極限,如果數列項數n趨於無窮時,數列的極限能一直趨近於實數a,那麼這個數列就是收斂的;如果找不到實數a,這個數列就是發散的。看n趨向無窮大時,xn是否趨向一個常數,可是有時xn比較複雜,並不好觀察。這種是最常用的判別法是單調有界既收斂。

3、加減的時候,把高階的無窮小直接捨去

如 1 + 1/n,用1來代替

乘除的時候,用比較簡單的等價無窮小來代替原來複雜的無窮小來

如 1/n * sin(1/n) 用1/n^2 來代替

4、收斂數列的極限是唯一的,且該數列一定有界,還有保號性,與子數列的關係一致。不符合以上任何一個條件的數列是發散數列。另外還有達朗貝爾收斂準則,柯西收斂準則,根式判斂法等判斷收斂性。

拓展資料

收斂數列具有的性質:

1、唯一性。如果數列xn收斂,每個收斂的數列只有一個極限。

2、有界性。定義:設有數列xn , 若存在m>0,使得一切自然數n,恆有|xn|3、保號性。

如果數列收斂於a,且a>0(或a<0),那麼存在正整數n,當n>n時,都有xn>0(或xn<0)。

建立下列各題中的方程並解答,建立下列各題中的方程並解答

甲池注水5噸,乙池放水9噸,此時甲池水的噸數與乙池的噸數相等.可知 甲 5 乙 9 甲 5 9 乙 甲 14 乙 解 設甲為x噸,乙就是x 14 x x 14 60 2x 60 14 2x 74 x 37 60 37 23 答 甲中有37噸,乙中有23噸.謝謝看一眼,希望能採納 解 設甲水池有水x噸...

讀我國地形圖,完成下列各題1填出下列字母數字所代表的

1 字母抄 數字所代表的地理事物名襲稱 baie是東北平原,b是內蒙古du高原,c是四川盆地 zhi,d是雲貴高原,daof是華北平原,是天山山脈 2 臺灣島 海南島是我國的兩個島嶼,每年難以受到冬季風的影響,其原因是 臺灣島和海南島的位置偏南,冬季風在南下的過程中受重重山脈的阻擋,到達南方時冬季風...

解答下列各題

根據句意和首字母提示拼寫單詞。1.hospital 2.bookstore 3.account 4.policeman 5.zoo 6.cook 寫出下列單詞的英語形式。1.go to school 2.stop 3.wait 4.buy 5.hike 6.then 7.hobby 8.teach ...