1樓:牆上有個如果
一次函式i、定義與定義式:
自變數x和因變數y有如下關係:
y=kx+b(k,b為常數,k≠0)
則稱y是x的一次函式。
特別地,當b=0時,y是x的正比例函式。
ii、一次函式的性質:
y的變化值與對應的x的變化值成正比例,比值為k
即 △y/△x=k
iii、一次函式的圖象及性質:
1. 作法與圖形:通過如下3個步驟(1)列表(一般找4-6個點);(2)描點;(3)連線,可以作出一次函式的圖象。(用平滑的直線連線)
2. 性質:在一次函式圖象上的任意一點p(x,y),都滿足等式:y=kx+b。
3. k,b與函式圖象所在象限。
當k>0時,直線必通過
一、三象限,y隨x的增大而增大;
當k<0時,直線必通過
二、四象限,y隨x的增大而減小。
當b>0時,直線必通過
一、二象限;當b<0時,直線必通過
三、四象限。
特別地,當b=0時,直線通過原點o(0,0)表示的是正比例函式的圖象。
這時,當k>0時,直線只通過
一、三象限;當k<0時,直線只通過
二、四象限。
iv、確定一次函式的表示式:
已知點a(x1,y1);b(x2,y2),請確定過點a、b的一次函式的表示式。
(1)設一次函式的表示式(也叫解析式)為y=kx+b。
(2)因為在一次函式上的任意一點p(x,y),都滿足等式y=kx+b。所以可以列出2個方程:
y1=kx1+b① 和 y2=kx2+b②。
(3)解這個二元一次方程,得到k,b的值。
(4)最後得到一次函式的表示式。
v、在y=kx+b中,兩個座標系必定經過(0,b)和(-b/k,0)兩點
vi、一次函式在生活中的應用
1.當時間t一定,距離s是速度v的一次函式。s=vt。
2.當水池抽水速度f一定,水池中水量g是抽水時間t的一次函式。設水池中原有水量s。g=s-ft。
反比例函式
形如 y=k/x(k為常數且k≠0) 的函式,叫做反比例函式。
自變數x的取值範圍是不等於0的一切實數。
反比例函式的影象為雙曲線。
如圖,上面給出了k分別為正和負(2和-2)時的函式影象。
二次函式
一般地,自變數x和因變數y之間存在如下關係:
y=ax^2+bx+c (a≠0)
(a,b,c為常數,a≠0,且a決定函式的開口方向,a>0時,開口方向向上,a<0時,開口方向向下。iai還可以決定開口大小,iai越大開口就越小,iai越小開口就越大。)
則稱y為x的二次函式。
二次函式表示式的右邊通常為二次三項式。
x是自變數,y是x的函式
二次函式的三種表示式
一般式:y=ax^2+bx+c(a,b,c為常數,a≠0)
頂點式:y=a(x-h)^2+k [拋物線的頂點p(h,k)] 對於二次函式y=ax^2+bx+c 其頂點座標為 (-b/2a,(4ac-b^2)/(4a))
交點式:y=a(x-x₁)(x-x ₂) [僅限於與x軸有交點a(x₁ ,0)和 b(x₂,0)的拋物線]
其中x1,2= (-b±√(b^2-4ac))/(2a)
注:在3種形式的互相轉化中,有如下關係:
______
h=-b/(2a) k=(4ac-b^2)/(4a) x₁,x₂=(-b±√b^2-4ac)/2a
二次函式的影象
在平面直角座標系中作出二次函式y=x^2的影象,
二次函式可以看出,二次函式的影象是一條拋物線。
二次函式標準畫法步驟
(在平面直角座標系上)
(1)列表
(2)描點
(3)連線
拋物線的性質
1.拋物線是軸對稱圖形。對稱軸為直線x = -b/2a。
對稱軸與拋物線唯一的交點為拋物線的頂點p。
特別地,當b=0時,拋物線的對稱軸是y軸(即直線x=0)
2.拋物線有一個頂點p,座標為p ( -b/2a ,(4ac-b^2)/4a )
當-b/2a=0時,p在y軸上;當δ= b^2-4ac=0時,p在x軸上。
3.二次項係數a決定拋物線的開口方向和大小。
當a>0時,拋物線向上開口;當a<0時,拋物線向下開口。
|a|越大,則拋物線的開口越小。
4.一次項係數b和二次項係數a共同決定對稱軸的位置。
當a與b同號時(即ab>0),對稱軸在y軸左;
當a與b異號時(即ab<0),對稱軸在y軸右。
5.常數項c決定拋物線與y軸交點。
拋物線與y軸交於(0,c)
6.拋物線與x軸交點個數
δ= b^2-4ac>0時,拋物線與x軸有2個交點。
δ= b^2-4ac=0時,拋物線與x軸有1個交點。
_______
δ= b^2-4ac<0時,拋物線與x軸沒有交點。x的取值是虛數(x= -b±√b^2-4ac 的值的相反數,乘上虛數i,整個式子除以2a)
當a>0時,函式在x= -b/2a處取得最小值f(-b/2a)=4ac-b^2/4a;在上是減函式,在上是增函式;拋物線的開口向上;函式的值域是相反不變
當b=0時,拋物線的對稱軸是y軸,這時,函式是偶函式,解析式變形為y=ax^2+c(a≠0)
二次函式與一元二次方程
特別地,二次函式(以下稱函式)y=ax^2+bx+c,
當y=0時,二次函式為關於x的一元二次方程(以下稱方程),
即ax^2+bx+c=0
此時,函式影象與x軸有無交點即方程有無實數根。
函式與x軸交點的橫座標即為方程的根。
1.二次函式y=ax^2,y=a(x-h)^2,y=a(x-h)^2 +k,y=ax^2+bx+c(各式中,a≠0)的圖象形狀相同,只是位置不同,它們的頂點座標及對稱軸如下表:
解析式y=ax^2
y=a(x-h)^2
y=a(x-h)^2+k
y=ax^2+bx+c
頂點座標
(0,0)
(h,0)
(h,k)
(-b/2a,(4ac-b^2)/4a)
對 稱 軸
x=0x=hx=hx=-b/2a
當h>0時,y=a(x-h)^2的圖象可由拋物線y=ax^2向右平行移動h個單位得到,
當h<0時,則向左平行移動|h|個單位得到.
當h>0,k>0時,將拋物線y=ax^2向右平行移動h個單位,再向上移動k個單位,就可以得到y=a(x-h)^2 +k的圖象;
當h>0,k<0時,將拋物線y=ax^2向右平行移動h個單位,再向下移動|k|個單位可得到y=a(x-h)^2+k的圖象;
當h<0,k>0時,將拋物線向左平行移動|h|個單位,再向上移動k個單位可得到y=a(x-h)^2+k的圖象;
當h<0,k<0時,將拋物線向左平行移動|h|個單位,再向下移動|k|個單位可得到y=a(x-h)^2+k的圖象;
因此,研究拋物線 y=ax^2+bx+c(a≠0)的圖象,通過配方,將一般式化為y=a(x-h)^2+k的形式,可確定其頂點座標、對稱軸,拋物線的大體位置就很清楚了.這給畫圖象提供了方便.
2.拋物線y=ax^2+bx+c(a≠0)的圖象:當a>0時,開口向上,當a<0時開口向下,對稱軸是直線x=-b/2a,頂點座標是(-b/2a,[4ac-b^2]/4a).
3.拋物線y=ax^2+bx+c(a≠0),若a>0,當x ≤ -b/2a時,y隨x的增大而減小;當x ≥ -b/2a時,y隨x的增大而增大.若a<0,當x ≤ -b/2a時,y隨x的增大而增大;當x ≥ -b/2a時,y隨x的增大而減小.
4.拋物線y=ax^2+bx+c的圖象與座標軸的交點:
(1)圖象與y軸一定相交,交點座標為(0,c);
(2)當△=b^2-4ac>0,圖象與x軸交於兩點a(x₁,0)和b(x₂,0),其中的x1,x2是一元二次方程ax^2+bx+c=0
(a≠0)的兩根.這兩點間的距離ab=|x₂-x₁| 另外,拋物線上任何一對對稱點的距離可以由|2×(-b/2a)-a |(a為其中一點)
當△=0.圖象與x軸只有一個交點;
當△<0.圖象與x軸沒有交點.當a>0時,圖象落在x軸的上方,x為任何實數時,都有y>0;當a<0時,圖象落在x軸的下方,x為任何實數時,都有y<0.
5.拋物線y=ax^2+bx+c的最值:如果a>0(a<0),則當x= -b/2a時,y最小(大)值=(4ac-b^2)/4a.
頂點的橫座標,是取得最值時的自變數值,頂點的縱座標,是最值的取值.
6.用待定係數法求二次函式的解析式
(1)當題給條件為已知圖象經過三個已知點或已知x、y的三對對應值時,可設解析式為一般形式:
y=ax^2+bx+c(a≠0).
(2)當題給條件為已知圖象的頂點座標或對稱軸時,可設解析式為頂點式:y=a(x-h)^2+k(a≠0).
(3)當題給條件為已知圖象與x軸的兩個交點座標時,可設解析式為兩根式:y=a(x-x₁)(x-x₂)(a≠0).
7.二次函式知識很容易與其它知識綜合應用,而形成較為複雜的綜合題目。因此,以二次函式知識為主的綜合性題目是中考的熱點考題,往往以大題形式出現.
2樓:三味學堂答疑室
一次函式,二次函式,反比例函式,三角函式,指數函式,對數函式,冪函式,反三角函式等
初中數學函式大全(分類
3樓:羅訊號
一次函式 y=kx+b (k為任意不為零常數,b為任意常數)正比例函式 y=kx(k為常數,且k≠0)反比例函式 y=k/x (k為常數,k≠0)二次函式 y=ax^2;+bx+c(a≠0,a、b、c為常數)頂點式:y=a(x-h)^2+k或y=a(x+m)^2+k交點式(與x軸):y=a(x-x1)(x-x2)圖是自己做的,有點...嘿嘿
初中數學函式大全
4樓:匿名使用者
一次函式i、定義與定義式:
自變數x和因變數y有如下關係:
y=kx+b(k,b為常數,k≠0)
則稱y是x的一次函式。
特別地,當b=0時,y是x的正比例函式。
ii、一次函式的性質:
y的變化值與對應的x的變化值成正比例,比值為k
即 △y/△x=k
iii、一次函式的圖象及性質:
1. 作法與圖形:通過如下3個步驟(1)列表(一般找4-6個點);(2)描點;(3)連線,可以作出一次函式的圖象。(用平滑的直線連線)
2. 性質:在一次函式圖象上的任意一點p(x,y),都滿足等式:y=kx+b。
3. k,b與函式圖象所在象限。
當k>0時,直線必通過
一、三象限,y隨x的增大而增大;
當k<0時,直線必通過
二、四象限,y隨x的增大而減小。
當b>0時,直線必通過
一、二象限;當b<0時,直線必通過
三、四象限。
特別地,當b=0時,直線通過原點o(0,0)表示的是正比例函式的圖象。
這時,當k>0時,直線只通過
一、三象限;當k<0時,直線只通過
二、四象限。
iv、確定一次函式的表示式:
已知點a(x1,y1);b(x2,y2),請確定過點a、b的一次函式的表示式。
(1)設一次函式的表示式(也叫解析式)為y=kx+b。
(2)因為在一次函式上的任意一點p(x,y),都滿足等式y=kx+b。所以可以列出2個方程:
y1=kx1+b① 和 y2=kx2+b②。
(3)解這個二元一次方程,得到k,b的值。
(4)最後得到一次函式的表示式。
v、在y=kx+b中,兩個座標系必定經過(0,b)和(-b/k,0)兩點
vi、一次函式在生活中的應用
1.當時間t一定,距離s是速度v的一次函式。s=vt。
2.當水池抽水速度f一定,水池中水量g是抽水時間t的一次函式。設水池中原有水量s。g=s-ft。
反比例函式
形如 y=k/x(k為常數且k≠0) 的函式,叫做反比例函式。
自變數x的取值範圍是不等於0的一切實數。
反比例函式的影象為雙曲線。
如圖,上面給出了k分別為正和負(2和-2)時的函式影象。
二次函式
一般地,自變數x和因變數y之間存在如下關係:
y=ax^2+bx+c (a≠0)
(a,b,c為常數,a≠0,且a決定函式的開口方向,a>0時,開口方向向上,a<0時,開口方向向下。iai還可以決定開口大小,iai越大開口就越小,iai越小開口就越大。)
則稱y為x的二次函式。
二次函式表示式的右邊通常為二次三項式。
x是自變數,y是x的函式
二次函式的三種表示式
一般式:y=ax^2+bx+c(a,b,c為常數,a≠0)
頂點式:y=a(x-h)^2+k [拋物線的頂點p(h,k)] 對於二次函式y=ax^2+bx+c 其頂點座標為 (-b/2a,(4ac-b^2)/(4a))
交點式:y=a(x-x
初中數學 如何學好函式,怎樣學好初中數學函式?有沒有好方法?
初中應該是初等函式吧,都做做練習,應該是問題不大,如果是高中的,那就要好好看下書了,而且要學會總結,在做題是特別要注意定義域的範圍,我以前就是沒注意所以常出錯,祝你好運能攻下它 好好聽課 多做題目 不懂的就要問老師 初中就學函式了?哎 比以前難了 要好好學啊 書是必須要看的,將書上的例題看透,認真體...
什麼是函式(初中數學),初中數學中函式的概念是什麼?
形如y kx b k不等於0 的函式叫做一次函式 當b 0時即y kx叫做正比例函式形如y k x k不等於0 的函式叫做反比例函式在平面直角座標系中 把滿足正比例函式 如y x 上的有序數對 x,y 如 1,1 2,2 3,3 等 在座標系中描出來並用平滑的曲線順次連線起來 就得到了正比例函式解析...
初中數學函式急呀
先得出平移後的一次函式表示式為y k x 2 b 2 向上平移是變y,所以給y加上2,向右平移是變x,左加右減,向右,所以減去2 與原圖重合,所以k x 2 b 2 kx b,解這個方程式可得 3k 2 0,k 2 3,然後把k帶回原式,他經過 2.2 再把這點帶回去,解得b 2 3,所以一次函式表...